Método de agrupamiento no supervisado para el procesamiento del lenguaje natural utilizando medidas de similitud asimétricas y propiedades paradigmáticas

No hay miniatura disponible
Fecha
2016
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de San Agustín de Arequipa
Resumen
Una de las tareas más comunes para el ser humano, pero de con una alta complejidad es la agrupación y clasificación. Por otro lado, la debilidad del ser humano es la capacidad de procesar altas cantidades de datos y de forma rápida, característica propia de los computadores. Hoy en día se generan grandes cantidades de datos en el Internet, datos de distintos tipos y con diferentes objetivos. Para esto se necesitan de algoritmos de agrupación que nos permitan identificar los distintos grupos y características de estos grupos, de forma automática sin conocimiento previo. Por otro lado, es importante definir con claridad qué medida de similitud se utilizará en el proceso de agrupación, la gran mayoría de las medidas de agrupación se enfocan en un aspecto simétrico. En la presente tesis se propone una novedosa medida de similitud asimétrica, Coeficiente d Similitud Unilateral Jaccard (uJaccard), similitud no es igual entre dos objetos uJaccard(a,b) ≠ uJaccard(b,a). Así también se presenta una similitud asimétrica con pesos Coeficiente Ponderado de Similitud Unilateral Jaccard, la cual mide el nivel de incertidumbre entre dos objetos. Así también en esta tesis se propone una nueva propiedad de grafos, la propiedad paradigmática la cual considera la equivalencia regular como característica fundamental y por último se propone un algoritmo de agrupación PaC, por sus siglas en inglés Paradigmatic Clustering, el cual incorpora la uJaccard y la propiedad paradigmática. Se ha realizado evaluaciones extensivas con datos pequeños, reales, sintéticos y se ha procesado 3 grandes corpus. Se ha demostrado que PaC es un algoritmo que sobre pasa los resultados de algoritmos de agrupación del estado del arte. Más aun PaC es un algoritmo capas de ser ejecutado de forma paralela, distribuida, incremental y en flujo, características que se necesitan para el procedimiento de grandes cantidades de datos y de constante generación de datos
Descripción
Palabras clave
Clustering, paradigmatic similarity, asymmetric similarity, similarity coefficient
Citación
Colecciones