Modelo de gestión para la previsión de generación eléctrica mediante energías renovables en empresas industriales

Show simple item record

dc.contributor.advisor Gómez Cornejo Gonzáles, Harold Peter Harry
dc.contributor.author Borja Murillo, Juan Guillermo
dc.date.accessioned 2022-01-31T19:56:22Z
dc.date.available 2022-01-31T19:56:22Z
dc.date.issued 2021
dc.identifier.uri http://hdl.handle.net/20.500.12773/13754
dc.description.abstract Una gran parte de la generación de energía renovable variable, como la eólica y la solar, se considera una de las estrategias clave a nivel mundial para descarbonizar el sector energético y así reducir el consumo de combustibles fósiles. El consumo de energía eléctrica en industria representa aproximadamente al 30% del costo total de la producción. En el caso de Perú, las empresas que contraten más de 1 MW de potencia lo pueden hacerlo directamente a la distribuidora o generadora con una tarifa libre que puede ser negociable. En todo caso, existen tarifas diferenciadas entre las horas punta, que van desde las 17:00 hasta las 21:00 horas, y fuera de punta que son todas las horas restantes del día. Son muy pocas las empresas industriales que cuentan con sistemas de generación eléctrica propia, y menos que empleen sistemas de generación con energías no convencionales como la fotovoltaica y/o eólica. Desarrollar una infraestructura económica de energía neta cero para la industria puede desempeñar un papel fundamental para lograr el objetivo de un paradigma de energía limpia asequible, confiable, sostenible y con ella, la reducción en los costos de producción. Sin embargo, es bastante desecante desarrollar una infraestructura de este tipo debido a la demanda incierta del sistema de fabricación, la generación de electricidad intermitente a partir de fuentes renovables y la planificación operativa integrada para el horizonte de planificación a largo plazo. Por ello, la previsión de la generación eléctrica es un requisito previo e importante para lograr una gestión energética sostenible, asegurar el correcto funcionamiento del sistema de energía y optimizar los costos asociados. Un modelo de previsión permite analizar la demanda de electricidad en base a información histórica para sostener un equilibrio de oferta y demanda en base a las operaciones de la industria. En esta tesis doctoral, se desarrolla un modelo de gestión para la previsión de la generación eléctrica mediante energía solar fotovoltaica. El modelo desarrollado parte de una función objetivo que minimiza el costo total relacionado con la energía del sistema que consiste en el costo de la energía de la red, el costo de inversión para las fuentes renovables y sus costos de operación y mantenimiento. El modelo se restringe a que no se pueda al mismo tiempo producir energía y comprar a la red con el _n de encontrar el balance energético del sistema, es decir, que la energía que ingrese sea igual a la energía que sale. Dado que la optimización de la función objetivo de forma directa no es trivial por su carácter estocástico de las variables, se hace uso de técnicas del aprendizaje automático. Las variables de decisión que controlan el modelo son la energía demandada y la energía generada, por ello, se ha implementado un modelo máquina en base a datos históricos, para predecir el consumo de energía y la generación de la energía solar fotovoltaica de acuerdo con los valores de la irradiancia solar, el tamaño de la micro red y la eficiencia de los paneles solares. Para implementar los modelos máquina, se han entrenado redes neuronales recurrentes y residuales con el _n de comparar las prestaciones a la hora de hacer las predicciones de la energía demandada y la generada por el sistema solar fotovoltaico. El modelo desarrollado ha sido probado con datos de un caso real de una empresa industrial de la ciudad de Arequipa. Donde se ha propuesto un diseño de sistema solar fotovoltaico dimensionado de acuerdo con el consumo histórico de la empresa. Luego, se ha sometido al modelo para encontrar el punto del balance energético del sistema obteniendo como resultado que cuando el sistema solar fotovoltaico trabaja, los costos de facturación se reducen a solo los asociados con la inversión para las fuentes renovables y sus costos de operación, mantenimiento y depreciación. es_PE
dc.format application/pdf es_PE
dc.language.iso spa es_PE
dc.publisher Universidad Nacional de San Agustín de Arequipa es_PE
dc.rights info:eu-repo/semantics/openAccess es_PE
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ es_PE
dc.source Universidad Nacional de San Agustín de Arequipa es_PE
dc.source Repositorio Institucional - UNSA es_PE
dc.subject Modelo de gestión es_PE
dc.subject Previsión de generación es_PE
dc.subject Energías renovables es_PE
dc.title Modelo de gestión para la previsión de generación eléctrica mediante energías renovables en empresas industriales es_PE
dc.type info:eu-repo/semantics/doctoralThesis es_PE
thesis.degree.name Doctor en Ciencias: Ingeniería de Producción es_PE
thesis.degree.grantor Universidad Nacional de San Agustín de Arequipa.Unidad de Posgrado.Facultad de Ingeniería de Producción y Servicios es_PE
thesis.degree.discipline Doctorado en Ciencias: Ingeniería de Producción es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#2.11.04 es_PE
renati.advisor.dni 29694950
renati.advisor.orcid https://orcid.org/0000-0002-7125-1304 es_PE
renati.author.dni 29206183
renati.juror Ramos Quispe, Julio Abraham
renati.juror Rendulich Talavera, Jorge Eusebio
renati.juror Gómez Cornejo Gonzales, Harold Peter Harry
renati.level http://purl.org/pe-repo/renati/level#doctor es_PE
renati.type http://purl.org/pe-repo/renati/type#tesis es_PE
dc.publisher.country PE es_PE


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess

Search DSpace


Browse

My Account

Statistics