UNIVERSIDAD NACIONAL DE SAN AGUSTIN
FACULTAD DE INGENIERIA DE PROCESOS
ESCUELA PROFESIONAL DE INGENIERIA QUIMICA

“Estudio del efecto del pH y la concentración de mordiente en el teñido sobre sustrato de Alpaca Suri con colorantes Naturales de estructura Curcuminoide, Xantófila y Antroquinónica”.

Tesis presentada por las Bachilleres:
Cavenago Benites Maira Fe
Córdova Valencia Alejandra

AREQUIPA – PERU

2014
A mis padres y hermanos por su incondicional amor, apoyo y soporte.

A mi familia y amigos por su ayuda y compañía.

A la vida que me ha dado tanto…

Alejandra Córdova Valencia
Se ha realizado una investigación del teñido de 3 tipos de colorantes naturales de estructuras: Curcuminoide (Colorante proveniente de la planta Cúrcuma Longa: Palillo, nombre comercial Globe Yellow 7%), Xantófila (Colorante proveniente de la planta Bixa Orellama: Achiote, nombre comercial Globebix EXL), y Antroquinónica (Colorante proveniente del insecto Grana Cochinilla, nombre comercial Carmin Liquido 3K), sobre sustrato de alpaca Suri, trabajando como variables el pH y la concentración de mordiente alumbre, y definiendo como parámetros las características propias del sustrato y en base a bibliografía los parámetros de teñido que se realizan para procesos en fibras proteicas con colorantes sintéticos.

Siendo el pH directa causa de los cambios de matiz para los 3 tipos de colorantes, los resultados fueron que a menor pH, la igualación del teñido se ve afectada, sin embargo la calidad del hilado se conserva. A pH básico la fibra proteica de alpaca Suri se ve dañada, con buen cubrimiento punta raíz.

Respecto a la cantidad de mordiente alumbre, la bibliografía indica que una cantidad excesiva de mordiente alumbre podría dañar la calidad del hilado, por lo que las pruebas preliminares partieron desde 2.5% de alumbre, terminando en 25%, siendo esta última la que dio mejores resultados respecto a solideces, matiz brillante y la resistencia del hilado se ve conservada.
TABLA DE CONTENIDOS

TABLA DE CONTENIDOS .. 1
LISTA DE TABLAS .. 4
LISTA DE IMÁGENES ... 10

CAPITULO I: FUNDAMENTOS DE LA INVESTIGACION ... 11

1.1. Planteamiento del Tema ... 11
 1.1.1. Objetivos.- ... 11
 1.1.2. Hipótesis.- ... 12
 1.1.3. Justificación del proyecto.- ... 13

CAPITULO II: MARCO TEÓRICO ... 14

2.1. Alpaca .. 14
 2.1.1. Nombre científico ... 14
 2.1.2. Alpaca Suri ... 15
 2.1.3. Características ... 16
 2.1.4. Vellón .. 16
 2.1.5. Características morfológicas .. 16
 2.1.6. Propiedades físicas ... 20
 2.1.7. Propiedades químicas ... 21

2.2. Colorantes ... 23

2.3. Teoría del color .. 35
 2.3.1. Fuente de luz ... 36
 2.3.2. Objeto observado ... 38
 2.3.3. Colorimetría ... 40

2.4. Proceso de teñido de la fibra proteica de Alpaca Suri .. 43
 2.4.1. Proceso de teñido de la fibra de Alpaca Suri por agotamiento .. 44
 2.4.2. Productos Auxiliares ... 46
 2.4.3. Curvas de teñido ... 51
 2.4.4. Variables del Proceso ... 53
 2.4.5. Descripción del Proceso de Teñido ... 55

CAPITULO III: MATERIALES Y MÉTODOS .. 58
3.1. Lugar de Ejecución .. 58
3.2. Insumos, Reactivos, Materiales y Equipos .. 58
 3.2.1. Insumos y Reactivos .. 58
 3.2.2. Equipos e instrumentos .. 59
3.3. Métodos .. 60
3.4. Métodos de validación de resultados .. 67

CAPITULO IV. RESULTADOS Y DISCUSION .. 87

 4.1. Resultados de la prueba Preliminar 1: Determinación de concentración de colorante .. 88
 4.2. Resultados de la prueba Preliminar 2: Determinación de mordiente 90
 4.3. Resultados de la prueba Preliminar 3: Determinación de auxiliares a utilizar 94
 4.4. Resultados de la prueba Preliminar 4. Determinación del número de baños a trabajar .. 94
 4.5. Resultados de la prueba Preliminar 5: Determinación del dador de ácido/ácali y la concentración de mordiente .. 98
 4.6. Resultados de la prueba Preliminar 6: Determinación de dador de ácido a utilizar 107
 4.7. Resultados de la prueba Preliminar 7: Determinación de los parámetros de teñido. Cinética de teñido .. 110
 4.8. Resultados de la prueba 8: Pruebas para mejorar las solideces al frote seco/húmedo y Lavado. ... 119
 4.9. Resultado de prueba 9: Determinación de la solidez a la luz 124
 4.10. Resultados de prueba 10: Determinación a la solidez al lavado 128
 4.11. Resultados de prueba 11: Determinación del desmontado con diferentes productos auxiliares ... 134
 4.12. Resultados de prueba 12: Ensayo Experimental con mayor concentración de mordiente .. 137
 4.13. Resultados de prueba 13: Comparativa con diferentes insumos para la obtención de mejor tacto en hilado ... 144
 4.14. Resultados de prueba 14: Prueba de combinación de colorantes en tricromía .. 150
 4.15. Resultados de prueba 15: Determinación de reproducibilidad a nivel laboratorio .. 152
 4.16. Resultados de prueba 16: Determinación de fuerza color 154
 4.17. Resultados de prueba 17: Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales .. 160

CONCLUSIONES ... 165
BIBLIOGRAFÍA .. 169
ANEXOS .. 172
Anexo 1. Equipos de medición de colorimetría ... 172
Anexo 2. Proceso Textil de la industrialización de la fibra Alpaca Suri 175
Anexo 3. Productos Auxiliares ... 185
Anexo 4. Equipos e Instrumentos .. 201
Anexo 5. Estándares de calidad según normas ISO y AATCC 208
Anexo 6. Lecturas de fuerza color obtenidas con el software de Datacolor para las curvas de subida y agotamiento para cada colorante .. 212
Anexo 7. Gráficos de las lecturas del DataColor para el desmontado con Sulfato de Sodio .. 224
Anexo 8. Gráficos de las lecturas del DataColor para el desmontado con Reductor. 230
Anexo 9. Lecturas de Pasa- Falla de reproducibilidad .. 236
Anexo 10. Lecturas de Pasa- Falla Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales ... 239
LISTA DE TABLAS

Tabla 1. Complejante y color resultante del ácido carmínico ... 35
Tabla 2. Longitud de Onda por Color ... 37
Tabla 3. Variables del Proceso .. 54
Tabla 4. Variables y Parámetros de la Prueba 1 .. 68
Tabla 5. Variables y Parámetros de la Prueba 2 .. 69
Tabla 6. Variables y Parámetros de la Prueba 3 .. 70
Tabla 7. Variables y Parámetros de la Prueba 4 ... 71
Tabla 8. Variables y Parámetros de la Prueba 5 ... 73
Tabla 9. Variables y Parámetros de la Prueba 6 ... 74
Tabla 10. Variables y Parámetros de la Prueba 7 ... 76
Tabla 11. Variables y Parámetros de la Prueba 8 ... 78
Tabla 12. Variables y Parámetros de la Prueba 11 .. 80
Tabla 13. Variables y Parámetros de la Prueba 12 .. 81
Tabla 14. Variables y Parámetros de la Prueba 13 .. 82
Tabla 15. Variables y Parámetros de la Prueba 14 .. 83
Tabla 16. Variables y Parámetros de la Prueba 15 .. 84
Tabla 17. Variables y Parámetros de la Prueba 17 .. 86
Tabla 18. Diferentes Concentraciones de colorante versus tiempo de agotamiento..... 88
Tabla 19. Resultados de matiz para los colorantes Globe Yellow 7% y Catechu Itodye, con diferentes mordientes ... 91
Tabla 20. Resultados de solideces al frote seco y húmedo con diferentes mordientes. 92
Tabla 21. Resultados visuales de solideces al frote seco y húmedo para los mordientes: Sulfato Alumínico Potásico, Sulfato de Cobre y Sulfato de Hierro, Cloruro de Estaño. 93
Tabla 22. Resultados de calidad del hilado en 1 baño versus 2 baños 95
Tabla 23. Estándares de calidad del hilado para Alpaca Huacaya y Suri. 96
Tabla 24. Resultados de solideces al frote seco y húmedo en 1 Baño versus 2 Baños. .. 97
Tabla 25. Resultados visuales de solideces al frote seco y húmedo en 1 Baño versus 2 Baños. .. 97
Tabla 26. Resultados de Calidad del Hilado con diferente dador de ácido/álcali y concentración de mordiente: Globe Yellow 7% ... 99
Tabla 27. Resultados de Calidad del Hilado con diferente dador de ácido/álcali y concentración de mordiente: Globexbix EXL 3% .. 100
Tabla 28. Resultados de Calidad del Hilado con diferente dador de ácido/álcali y concentración de mordiente: Carmín Liquido K3 .. 101
Tabla 29. Resumen de promedios de RKM de las Tablas 13, 14 y 15. 102
Tabla 30. Resumen de valores de pH, para los diferentes dadores de ácido/álcali y concentración de mordiente alumbre. ... 103
Tabla 31. Comparativa de solideces al frote seco y húmedo con los diferentes ácidos/álcalis en la concentración de mordiente 2.5% y 5% .. 105
Tabla 32. Comparativa Visual de solideces al frote seco y húmedo con los diferentes ácidos/álcalis en la concentración de mordiente 2.5% y 5% 106
Tabla 33. Comparativa de solideces al frote seco y húmedo de Ácido Acético versus Ácido Cítrico. ... 108
Tabla 34. Comparativa Visual de solideces al frote seco y húmedo de Ácido Acético versus Ácido Cítrico. ... 109
Tabla 35. Solideces al frote seco y húmedo de colorante Globe Yellow 7% para 1%, 2% y 3% ... 118
Tabla 36. Solideces Visuales al frote seco y húmedo de colorante Globe Yellow 7% para 1%, 2% y 3% ... 118
Tabla 37. Resultados de Calidad del Hilado con el agente reductor para mejorar solideces al frote seco y húmedo. .. 120
Tabla 38. Resultados de solideces al frote seco y húmedo después de tratados de mejora. ... 122
Tabla 39. Resultados Visuales de solideces al frote seco y húmedo después de tratados de mejora ... 123
Tabla 40. Resultados de solidez al lavado para 1 baño versus 2 baños.............. 128
Tabla 41. Resultados Visuales de la solidez al lavado para 1 baño versus 2 baños .. 129
Tabla 42. Resultados de solidez al lavado con diferente dador ácido/álcali........... 130
Tabla 43. Resultados Visuales de solidez al lavado con diferente dador acido/álcali . 131
Tabla 44. Resultados de solidez al lavado para mejorar solideces al Frote seco y húmedo. ... 132
Tabla 45. Resultados visuales de solidez al lavado para mejorar solideces al Frote seco y húmedo. ... 133
Tabla 46. Solideces al frote seco y húmedo, previo y post desmontado con Auxiliar: Sulfato de Sodio.. 135
Tabla 47. Solideces visuales al frote seco y húmedo, previo y post desmontado con Auxiliar: Sulfato de Sodio. ... 136
Tabla 48. Solideces al frote seco y húmedo, previo y post desmontado con Auxiliar: Reductor.. 136
Tabla 49. Solideces visuales al frote seco y húmedo, previo y post desmontado con Auxiliar: Reductor.. 137
Tabla 50. Resultados de Calidad de Hilado para pruebas con 25% de Mordiente 138
Tabla 51. Solideces al frote seco y húmedo .. 139
Tabla 52. Solideces visuales al frote seco y húmedo .. 140
Tabla 53. Solideces al lavado ... 141
Tabla 54. Solideces visuales al lavado

Tabla 55. Resultados de Calidad de Hilado para pruebas con 40%, 55% y 70% de Mordiente.

Tabla 56. Comparativa con diferentes insumos para la obtención de mejor tacto en hilado.

Tabla 57. Valores de pH para los baños con los diferentes insumos para la obtención de mejor tacto en hilado.

Tabla 58. Comparativa de solideces al frote seco y húmedo, con diferentes insumos para mejorar tacto.

Tabla 59. Comparativas Visuales de solideces al frote seco y húmedo, con diferentes insumos para mejorar tacto.

Tabla 60. Comparativa de solideces al frote seco y húmedo, para diferentes tricromías.

Tabla 61. Comparativa visual de solideces al frote seco y húmedo, para diferentes tricromías.

Tabla 62. Resultados de matiz: Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales.

Tabla 63. Comparativa de solideces al frote seco y húmedo, para colorantes sintéticos versus colorantes Naturales.

Tabla 64. Comparativa Visual de solideces al frote seco y húmedo, para colorantes sintéticos versus colorantes Naturales.

Tabla 65. Comparativa de solidez al Lavado, para colorantes sintéticos versus colorantes Naturales.

LISTA DE GRAFICOS

Gráfico 1. Diagrama de Flujo del Proceso de la Industria Textil De la Alpaca 43
Gráfico 2. Curva de Teñido General .. 52
Gráfico 3. Curva de Teñido Modificada para Colorantes Naturales 52
Gráfico 4. Algoritmo del Procedimiento Experimental .. 55
Gráfico 5. Concentración de colorante al 2% versus tiempo de agotamiento. 88
Gráfico 6. Concentración de colorante al 4% versus tiempo de agotamiento 89
Gráfico 7. Concentración de colorante al 6% versus tiempo de agotamiento. 89
Gráfico 8. Curva de Cinética de teñido de colorante Globe Yellow 7% al 2%. Curva de subida versus curva de agotamiento de colorante. ... 111
Gráfico 9. Curva de Cinética de teñido de colorante Globebix EXL al 2%. Curva de subida versus curva de agotamiento de colorante. .. 112
Gráfico 10. Curva de Cinética de teñido de colorante Carmín Liquido K3 al 2%. Curva de subida versus curva de agotamiento de colorante. 113
Gráfico 11. Curva de Cinética de teñido de colorante Globe Yellow 7% al 1%. Curva de subida versus curva de agotamiento de colorante. ... 114
Gráfico 12. Concentración de Globe Yellow 7% a concentración 1% versus 2%. 116
Gráfico 13. Concentración de Globe Yellow 7% a concentración 2% versus 3%. 117
Gráfico 14. Fuerza color resultante de 20 horas de exposición a la luz solar del colorante Globe Yellow 7%. ... 125
Gráfico 15. Fuerza color resultante de 20 horas de exposición a la luz solar del Colorante Globebix 3%. ... 126
Gráfico 16. Fuerza color resultante de 20 horas de exposición a la luz solar del colorante Carmín Liquido K3. ... 127
Gráfico 17. Fuerza Color para el colorante Globe Yellow 7% en comparativa con desarrollo en tricromía Colorantes Sandolan .. 154
Gráfico 18. Fuerza Color para el colorante Globe Yellow 7% en comparativa con desarrollo en tricromía Colorantes Lanaset.. 155
Gráfico 19. Fuerza Color para el colorante Globebix EXL 3% en comparativa con desarrollo en tricromía Colorantes Sandolan. .. 156
Gráfico 20. Fuerza Color para el colorante Globebix EXL 3% en comparativa con desarrollo en tricromía Colorantes Lanaset.. 157
Gráfico 21. Fuerza Color para el colorante Carmín Liquido K3 en comparativa con desarrollo en tricromía Colorantes Sandolan. .. 158
Gráfico 22. Fuerza Color para el colorante Carmín Liquido K3 en comparativa con desarrollo en tricromía Colorantes Lanaset.. 159
LISTA DE IMÁGENES

Imagen 1. Fibra de Alpaca ... 17
Imagen 2. Estructura de la fibra de Alpaca .. 18
Imagen 3. Corte longitudinal de la fibra de Alpaca 18
Imagen 4. Corte transversal de la fibra de Alpaca 19
Imagen 5. Medula de la fibra de Alpaca ... 20
Imagen 6. Estructura de la Queratina .. 23
Imagen 7. Modelo de la interacción entre la fibra y diversos mordiente 46
Imagen 8. Paleta de color. ... 150
CAPITULO I: FUNDAMENTOS DE LA INVESTIGACION

1.1. Planteamiento del Tema

La industria textil actual trabaja los teñidos con colorantes sintéticos, debido a su facilidad de trabajo, en tiempos cortos de teñido, buena reproducibilidad lote a lote, amplia gama en la obtención de colores que van desde los más limpios y brillantes hasta los oscuros e intensos, con muy buenas solideces al frote, lavado y luz. Debido a estas cualidades de los colorantes sintéticos, es que la utilización de colorantes naturales es muy reducida, aún más sobre una fibra natural, y nulo en la fibra especial como la Alpaca Suri.

Es por esto que nos preguntamos: ¿Por qué no teñimos con colorantes naturales nuestra fibra peruana más reconocida mundialmente como es la Alpaca Suri, cuando las antiguas civilizaciones más resaltantes como la pre-incaica (Perú), la Maya (México), la Egipcia (Egipto), etc. tiñeron sus mantos y telares con vistosos colores obtenidos de plantas e insectos, que hasta el día de hoy se mantienen coloreados?

1.1.1. Objetivos.-

1.1.1.1. **Objetivo General.-**

Determinar el efecto del pH y de la concentración de mordiente alumbre para el teñido de la fibra proteica Alpaca Suri con tres tipos de colorantes naturales: de estructura Curcuminoide, Xantófila, y Antroquinónica, buscando obtener un hilado teñido con características de calidad conservadas y solideces de acuerdo a los estándares de las normas ISO y AATCC.
1.1.1.2. **Objetivos Específicos.**

1. Determinar el pH en el proceso de teñido con colorantes naturales de estructura curcuminoide (palillo, Globe Yellow 7%), xantofila (Achiote, Globebix EXL 3%) y antroquinónica (Cochinilla, Carmin Liquido 3K).
2. Determinar la concentración de alumbre en el proceso de teñido con colorantes naturales de estructura curcuminoide, xantofila y antroquinónica.
3. Observar los baños de agotamiento en el mordentado según las modificaciones de la concentración de mordiente y pH.
4. Evaluar la variación de la elongación y la resistencia del hilado previo y post el proceso completo de teñido.
5. Determinar la fuerza color lograda con colorantes de estructura Curcuminoide, Xantófila y Antroquinónica en comparativa con colorantes sintéticos similares en matiz.
6. Determinar la paleta de colores para los colorantes naturales en estudio.
7. Evaluar las solideces al lavado, al frote seco y húmedo, a la luz según las normativas AATCC e ISO.
8. Realizar un análisis comparativo del matiz, igualación y solideces con colorantes ácidos, colorantes complejo metálico versus colorantes naturales.

1.1.2. **Hipótesis.-**

Que trabajando con colorantes naturales bajo parámetros estrictamente controlados de pH y porcentaje de mordiente, conociendo los puntos de inflexión de cada colorante, es posible lograr buenas solideces, mantener los estándares de calidad del hilado y obtener una paleta de colores amplia en la fibra proteica Alpaca Suri dentro de las exigencias del mercado.
1.1.3. Justificación del proyecto.-

1.1.3.1. Justificación tecnológica.-

✓ La investigación definirá los parámetros de teñido adecuados que permitan un agotamiento satisfactorio como también que no dañe la fibra proteica.
✓ El trabajo de investigación permitirá el desarrollo de una tecnología alternativa favorable al medio ambiente.
✓ La investigación develará las ventajas del teñido con colorantes naturales así como la variedades de la paleta de colores obtenidos según el colorante y mordiente usado.
✓ El estudio comparativo con colorantes ácidos, colorantes complejo metálico vs colorantes naturales determinará si las solideces están en un rango dentro de la normativa para que el producto pueda competir en un mercado internacional.

1.1.3.2. Justificación ambiental.-

Con el uso de colorantes naturales en el teñido de fibras proteicas se busca minimizar la cantidad de contaminantes en los efluentes del proceso de teñido, tales como metales pesados y otros.

1.1.3.3. Justificación de salud ocupacional.-

Utilizando los colorantes naturales, se garantiza que al manipularlos a lo largo del proceso, la salud del operario no se verá dañada ni a corto ni a largo plazo.
CAPITULO II: MARCO TEORICO

2.1. Alpaca

La alpaca (*Lama pacos*), es la especie de camélidos de mayor existencia numérica en el Perú y la más cotizada por la producción de fibra.

Es un animal de cuello erguido delicadamente delgado, de dorso curvo, hocico puntiagudo y corto, esbeltas extremidades, grandes ojos vivaces y un llamativo y finísimo pelaje.

Pueden medir entre 1,20 y 1,50 metros y llegar a pesar entre 45 y 79 kilogramos. Tiene una silueta más pequeña y curva que la llama y en la frente presenta un clásico mechón de fibra.

Se obtiene entre 1.5 a 3 kilogramos de fibra por alpaca esquilada, y su rendimiento es de 70%.

2.1.1. Nombre científico

Phylum: cordados
Clase: mammalia
Subclase: Eutheria
Orden: artiodactyla
Suborden: pecora
Familia camelidae
Género: Lama
Especie: Pacos
Nombre científico: *Lama pacos*
Nombre común: Alpaca
2.1.2. Alpaca Suri

Existen dos razas de alpacas: Suri y Huacaya. Se diferencian claramente por sus características fenotípicas\(^1\). Ambas razas presentan una gama de colores de fibra que van del blanco al negro pasando por los colores intermedios. Hay una mayor demanda del mercado por la fibra blanca, de ahí que hay una tendencia al predominio de animales blancos en los rebaños por la selección orientada a esa característica. Sin embargo, los colores naturales son cada vez más apreciados por la industria por lo que se impone la necesidad de preservar este material genético.

La alpaca Suri presenta fibras de gran longitud que se organizan en rizos que caen por los costados del cuerpo, similar a lo que se observa en los ovinos de raza Lincoln; esto le da al animal una apariencia angulosa.

La fibra de alpaca se clasifica de acuerdo al micronaje que posee en:

1. **Baby Alpaca - BL**: Varía alrededor de 19 a 22.5 micrones; Se obtiene tanto del "Tui\(^2\)", como de una parte del vellón de animales adultos, la cual alcanza igual finura. El uso se concentra en finas prendas de tejido de punto, chales y otros.
2. **Fleece - FS**: Varía entre 25.5 a 26.5 Mc. Usado para la elaboración de sacos y abrigos.
3. **Suri Baby- SU-BL**: Cuenta con micronaje de 22.5. Usado en finas pashminas, chales.
4. **Suri – SU**: Cuenta con micronaje de 27.5. Usado para la elaboración de sacos y abrigos.
5. **Huarizo - HZ**: Se encuentra entre 30 a 31 Micrones. Su utilización se da en un 100% o en mezclas con otras fibras naturales o artificiales para tejido de punto.
6. **Coarse - AG**: Varía entre 33 a 36 Micrones. Su utilización pueda darse en un 100% o en mezclas con otras fibras naturales o artificiales, para tejido plano en tapicerías, alfombras, forros, etc.

\(^1\) Fenotípico: Manifestación visible del genotipo en un determinado ambiente.
\(^2\) Tui: primera esquila de la alpaca.
2.1.3. Características

- Las alpacas de esta raza se distinguen por su conformación regular y equilibrada, presenta contornos lineales y angulosos, que dan la sensación de delicadeza.
- Es más sensible a cambios bruscos de temperatura, por lo que su hábitat es limitado, localizándose sólo entre los 4.000 y 4.400 m.s.n.m.
- Su fibra es algo sedosa y brillante, abundante y fina. El largo varía entre 10 y 30 centímetros.
- El vellón o fibra que se obtiene es de mayor peso que el de la huacaya.

2.1.4. Vellón

Se define como vellón al conjunto de fibra de un camélido, que cubre todo su cuerpo incluyendo las extremidades hasta las canas, la línea superior de la alpaca que es ligeramente convexa y continua hasta la cola. La fibra fina se encuentra en la parte del lomo y los flancos del animal; mientras que las fibras gruesas se concentran mayormente en la región pectoral, extremidades y cara.

En el caso de la fibra de alpaca según la norma técnica peruana NTP 231.302, se debe seleccionar vellones según su porcentaje de calidades superiores e inferiores, esto es para ambas razas Huacaya y Suri en sus diferentes colores. Existen 4 categorías: Extrafina, Fina, Semi fina y Gruesa.

2.1.5. Características morfológicas

Bajo observación microscópica, en la imagen 1. Las escamas son pocos evidentes, sutiles, de suaves perfiles y muy adosadas, presentando como característica principal una mayor dimensión en el eje horizontal que en el vertical, fenómeno que la diferencia de las fibras de lana.
Fuente: Textiles Peruanos, Edición 13, 2014

El canal medular es visible en la mayoría de las veces, contiguo, o interrumpido, y a menudo bifurcado. La sección transversal generalmente es elíptica, y se observa tendencia a pigmentación periférica, con capa cuticular de notable espesor, como se ve el detalle en las imágenes 2 y 3, mostradas a continuación.
Imagen 2. Estructura de la fibra de Alpaca

Fuente: Textiles Peruanos, Edición 13, 2014

Imagen 3. Corte longitudinal de la fibra de Alpaca

Fuente: Textiles Peruanos, Edición 13, 2014
Imagen 4. Corte transversal de la fibra de Alpaca

Fuente: Textiles Peruanos, Edición 13, 2014

En la imagen 4. Corte transversal de una fibra de alpaca, se ve el canal central pigmentado llamado médula, contenido de una capa intermedia llamada tejido cortical y una vaina externa llamada epidermis o capa epitelial. La médula mostrada en la imagen 5, se puede identificar por microscopio con luz polarizada. El tejido cortical es la parte que recibe el tinte cuando la fibra es sometida a teñido. La epidermis se puede identificar por microscopio distinguiendo las escamas de la superficie.
Imagen 5. Medula de la fibra de Alpaca

Fuente: Textiles Peruanos, Edición 13, 2014

2.1.6. **Propiedades físicas**

a) Elongación y Resistencia\(^3\): Otorgada por la uniformidad y sincronizado del rizo que se da en el crecimiento natural de la fibra.

b) Factor de Comfort: Esta dada por la sensación de suavidad, la tersura, la humedad y el carácter mismo de la fibra.

c) Propiedad Térmica: Actúa como un aislante que mantiene la temperatura corporal en sus niveles normales; esto debido a la cavidad o vacío de aire que posee cada una de las fibras.

d) Resistencia a la tracción y flexibilidad: Sobresaliendo en resistencia ampliamente a comparación de otras fibras como la lana de Merino y el Mohair.

e) Durabilidad: Se conserva admirablemente en el tiempo, no sufriendo daños por hongos u otros microorganismos.

f) Color: Obteniéndose más de veinticinco colores naturales, tonos que van desde blancos, grises, marrones hasta llegar al negro.

\(^3\) Se entiende como elongación y resistencia: a la elasticidad y capacidad de tensión del hilado respectivamente.
g) Higroscopicidad: Absorbe vapor de agua en un ambiente húmedo aumentando de esta manera su volumen.

2.1.7. Propiedades químicas

El pelo es una proteína compuesta de varios aminoácidos. La queratina del pelo es un polímero natural que presenta una composición química elemental: 50% de carbono, 16% de nitrógeno, 3.7% de azufre, 7% de hidrógeno y 23.5% de oxígeno. La fibra de alpaca se diferencia por tener un mayor contenido de azufre, 4.19%.

La queratina de la fibra junto a una infinidad de células que se sobreponen como las tejas de un techo como se ha observado en las figuras del punto anterior, constituyen una barrera aislante para los cambios térmicos. Los álcalis hacen que la fibra se hinche y acaban por disolverla en concentraciones altas, en cambio esta fibra resiste la acción de los ácidos diluidos.

El comportamiento de la queratina frente a diferentes valores de pH es:
- A pH de 3'7 a 4'1 la queratina se encuentra a pH ideal.
- A pH entre 9 y 12 abrimos la cutícula.
- A pH de 2 y 3 se rompen los enlaces de hidrógeno y los salinos.

Una veintena de aminoácidos son los que definen la composición química formando cadenas polipeptídicas helicoidales que varían en relación al número, tipos de aminoácidos y disposición de los mismos.

Al igual que las fibras vegetales, las fibras de origen animal y algunas sintéticas, tienen como base de composición química un polímero siendo en este caso de naturaleza polipeptídica, con lo que comunican a todas ellas propiedades similares. Esta cadena polipeptídica es producto de la condensación de N aminoácidos y esquemáticamente podemos representarlo con la siguiente fórmula:

\[
\text{NH}_2 - R - \text{COOH}
\]
Residiendo la diferencia entre uno y otro por los grupos R de las diversas proteínas. Los grupos - NH₂ y – COOH son de naturaleza hidrofílica, por lo que tienen gran afinidad por el agua, pasando a tener una estructura de la siguiente forma:

\[\text{HO} - \text{NH}_3 - \text{R} - \text{COOH} \]

Lo que juega un papel fundamental en el proceso de tintura, pues los grupos amino y carboxilo poseen naturaleza anfotérrica, es decir reactividad⁴ hacia los compuestos de naturaleza acida y básica, por ende hacia lo colorantes con esta constitución.⁵

⁴ Reactividad: La reactividad de una especie química es su capacidad para reaccionar químicamente en presencia de otras sustancias químicas o reactivas.

⁵ Fuente: “Fundamentos científicos y aplicados de la tintura de materias textiles”, Dr. José Cegarra, pág. 15, Barcelona, España 1980.
2.2. Colorantes

Dentro de los procesos de manufacturación a los que se someten los textiles, existe una operación que por producir en ellos una característica tan acusada como es el cambio de su coloración y por enriquecer esta de una forma tan sostenible el valor económico y artístico de aquellos, ha sido desde los más remotos tiempos objeto de una particular atención por todos lo que intervienen en el desarrollo de sus procedimientos.

"Las sustancias químicas que pueden proporcionar colores a muchos sustratos textiles o no textiles denominados colorantes o pigmentos. Lo que distingue un colorante de un pigmento es que el primero es soluble o dispersable en el medio de aplicación (agua) y el segundo no lo es." 6

Se puede definir la tintura como aquel proceso durante el cual un sustrato puesto en contacto con la solución de un colorante, absorbe a este de tal forma que el cuerpo

teñido tiene resistencia a devolver la materia colorante al baño del cual la absorbió. Esta resistencia es consecuencia de la energía de las estructuras moleculares de dichos cuerpos y de la forma como se ha efectuado la tintura.

B.1) Colorante de estructura Curcuminoide

Comúnmente conocido como Palillo

Nombre comercial: Globe Yellow 7%

Cúrcuma longa es el nombre científico de la planta conocida comúnmente como palillo o cúrcuma. Es una planta herbácea de 1 a 1,5 metros de altura, sus hojas son largas y rectangulares y sus flores son largas, espiadas y blancas. Crece en los suelos arcillosos de zonas lluviosas y de temperaturas templadas, se recolecta cuando sus hojas comienzan a amarillear, normalmente después de 7 a 9 meses de haberla plantado.

La cúrcuma procede del rizoma de la planta (tallo horizontal subterráneo con ramas nudosas), es grueso y muy ramificado y ha sido usado desde tiempo atrás como condimento en forma de polvo fino -principal ingrediente del curry-, como también para el teñido de fibras animales y naturales. Es también conocido con los nombres de turmeric, raíz amarilla, palillo chuncho guisador y azafrán de la india.

Es oriunda de Asia subtropical, principalmente de la India y Malasia, propagándose luego en África y América. Según su origen geográfico se distinguen variedades: Alleppey o Allepey turmeric (de un color amarillo oscuro o anaranjado), madras o Madras turmeric (de color amarillo mostaza o amarillo limón), y el Haiti o Haiti turmeric (de color amarillo anaranjado oscuro o café amarillento), siendo las dos primeras las más apreciadas.

Su clasificación taxonómica es:

- Familia: Zingiberaeeae (Zingiberáceas).
- Origen: sur de Asia.
- Especie: herbácea
Los curcuminoides de la cúrcuma son fenilpropanoides, que contienen la estructura básica del fenol más una cadena de 3 carbonos como grupo lateral. Fueron aislados inicialmente en 1815, cuya fórmula molecular C_{21}H_{20}O_{6} fue descrita y sintetizada en 1910 por el químico polaco Victor Lampe. El principio colorante del palillo o cúrcuma es la curcumina 1,7-bis (4-hidroxi-3-metoxifenil)-1,6-heptanodieno-5,5-diona, acompañado de otros curcuminídes en pequeñas cantidades, aceites esenciales, alcaloides y proteínas.

Extracción de colorante:
La extracción de colorante se inicia con la molienda del rizoma\(^7\) de la planta, para luego ser pesado y preparar la solución de extracción respecto al peso, se homogeniza y nuevamente se miden parámetros para ser ajustados si fuera necesario. Se incuba con la solución de extracción y se filtra, la pasta obtenida se pasteuriza, se somete a secado y se envasa.

Color y pH:

\(^7\) Rizoma: es un tallo subterráneo con varias yemas que crecen de forma horizontal emitiendo raíces y brotes herbáceos de sus nudos.
A pH 3 es de color amarillo limón, y a pH 10 es de color naranja a marrón rojizo, es estable al calor, pero sensible a la luz, lo que muchas veces hace limitada su aplicación.

Complejante:

La curcumina con sulfato de hierro da color marrón dorado, y en baño acido sin complejante da colores amarillos brillantes.

Globe Yellow 7%

Globe Yellow 7%, es el nombre comercial que le da la casa de colorantes GlobeNatural, al colorante natural producido a partir del turmeric (Curcuma Longa), el cual es concentrado, purificado y deodorizado e incorporado a ingredientes aprobado por FDA.

Es un líquido siruposo amarillo, rojizo oscuro, soluble en agua y en soluciones a pH acido.

B.2) Colorante de estructura Xantofila

Comúnmente conocido como Achiote

Nombre comercial: Globebix EXL 3%

El Achiote es una especie de color rojizo-amarillento de la semilla del arbusto homónimo, cuyo nombre científico es Bixa Orellana, también es conocida como achote, bixina, urucú, etc., de estructura química Carotenoide. Y tiene la siguiente clasificación:

Subdivisión: Angiosperma

Clase: Dicotiledóneas

8 Food and Drug Administration
9 Siruposo: Aspecto con excesiva viscosidad.
Orden: Parietales
Familia: Bixáceas
Genera: Bixa
Especies: B. Orellana Linneo, B. Sphaerocarpa Triana, B. Urucarana Willd, B. Purpurea Hort, etc.

La planta se encuentra en Sudamérica como también en el Caribe, sus semillas son pequeñas, rojas y triangulares, tiene flores muy visosas y de color blancas o rosadas según sea la variedad; el fruto es una capsula de color pardo rojizo o amarillo verdoso que contiene de 30 a 45 semillas cubiertas por una delgada capa que por su contenido de bixina, es de color rojo o anaranjado y constituye la sustancia tintórea propiamente dicha.

Composición química:

El principal constituyente colorante de la semilla del achiote es la bixina, que se encuentra en la cubierta exterior de la semilla del fruto, representa más del 80% de los pigmentos presentes, lo cual facilita su extracción; los componentes principales de la semilla del achiote son:

- Resina
- Orellina (materia colorante amarilla)
- Bixina (materia colorante roja) (80%)
- Aceite Volátil y aceite Graso

La bixina químicamente, es un ácido carotenóico de fórmula empírica $C_{25}H_{30}O_4$, que se presenta como isómero geométrico del tipo cis, pero que puede convertirse a su forma trans, más estable (Jaramillo, 1992). Es insoluble en agua y ligeramente soluble.
en cloroformo, aceites vegetales, acetato de etilo y propilenglicol. A continuación su fórmula estructural.

![Acido cis-polieno monometilester dicarboxilico](image)

Acido cis-polieno monometilester dicarboxilico

En el achiote se han identificado 35 componentes, entre los cuales está el acetato de (Z-E)-farnesilo (11.6%), acetato de occidentalol (9.7%), espatulenol (9.6%), bixina y norbixina que son los de mayor porcentaje. La cantidad total de bixina y norbixina varía significativamente, los valores comunes son de 2-5%, pero el contenido podría alcanzar sobre el 7% del peso seco de las semillas. La bixina es la forma cis- del monometil ester del ácido carotenoiide carboxílico, y se encuentra en la pulpa que envuelva las semillas, pudiendo llegar hasta a un 3% de su peso.

![bixina](image)

![norbixina](image)

10 Mosquera, 1989; Kalsec, 2001
Figura: Esstructura de la Bixina y Norbixina

Extracción de colorante

Para extraer el pigmento de las semillas secas del achiote se utilizan principalmente 3 procesos comerciales: extracción directa en el aceite, extracción directa en el álcali acuoso y extracción indirecta con solventes. La mayoría se extrae en forma directa (álcali acuoso o aceite caliente).

Se utiliza el aceite caliente para facilitar la isomerización del 9 cis-bixina a la trans-bixina relativamente más soluble (Preston y Richard, 1980).

A continuación se muestra el diagrama de bloques del proceso de extracción de la bixina en aceite:
Color y pH

“La bixina frente al HCl permanece naranja con poco cambio de color, con NaOH al 10% no presenta cambio, con hiposulfito de sodio poco cambio”\(^\text{11}\). Con esta premisa podemos deducir que el colorante de achiote en pH básico no se tiene mayor cambio de coloración, sin embargo a pH ácidos la coloración naranja se intensifica.

Complejante

Siendo el uso del colorante de achiote en mayor proporción para la industria de alimentos, no se encuentra bibliografía de los colores resultantes frente a los diferentes complejantes, sin embargo a lo largo del estudio, se ha podido formar una paleta de colores que será mostrada en los resultados de las pruebas experimentales.

Globebix EXL 3%

Globebix EXL 3%, es el nombre comercial que le da la casa de colorantes GlobeNatural, al colorante natural obtenido de la semilla de achiote (bixa Orellana).

Es un líquido marrón rojizo oscuro, estable a luz y al calor. Estable al pH básico de 12.

B.2) Colorante de estructura Antroquinónica

Comúnmente conocido como Cochinilla

Nombre comercial: Carmín líquido K3

La grana cochinilla (Dactylopius coccus Costa) es un insecto que vive como huésped de la tuna, especialmente de la especie Opuntia ficus-indica (L) Mill,

alimentándose del clorenquima12. La importancia de este insecto es que produce ácido carmínico el cual se extrae de diversas maneras para transformarlo en un polvo fino de color rojo purpura intenso, que se comercializa en extracto líquido, para ser empleado como colorante orgánico en la industria alimentaria, farmacéutica, textil y de cosméticos (Perez y Becerra, 2001)13. Es originaria de Perú, aunque existen vestigios que también pudo ser originaria de México.

Su clasificación taxonómica es:

- Reino: Animalia
- Phylum: Arthropoda
- Clase: Malacostraca
- Orden: Isopoda
- Familia: Philosciidae
- Genero: Armadillidium
- Especie: Armadillidium vulgare

Composición Química:

El insecto adulto hembra contiene 10\% de ácido carmínico, cuyo nombre químico es: \textit{Acido Antraquinon-7-glucopiranosi-5, 6, 8- tetrahidroxi-1-metil-2-carboxilico}, de formula $C_{22}H_{20}O_{13}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{AcidoCarminico.png}
\caption{Ácido carminico.}
\end{figure}

12 Clorenquima es un tejido vegetal característico de las hojas de las plantas superiores. Es el tejido fotosintético por excelencia ya que sus células contienen cloroplastos que se encargan de transformar la energía lumínica en energía química.

13 Perez, M; Becerra, r. 2001. Nocheztl: el insecto del rojo carmín; Rev. Biodiversitas. 36 (6): 2-6.
Extracción de colorante

Los productos derivados de la cochinilla pueden obtenerse como extractos acuosos (con extracciones de ácido carmínico de hasta 50% dependiendo de las condiciones ambientales de la cochinilla), extractos alcohólicos de colorante de cochinilla (con extracciones de ácido carmínico de hasta 50% dependiendo las condiciones ambientales de la cochinilla), soluciones de carmín (se puede extraer hasta 5% de ácido carmínico) en este último se pueden utilizar para la metodologías alemana, japonesa, americana o inglesa, que son usada para colear alimentos con ácidos de frutas debido a que son estables para este tipo de tintes.\(^{15}\)(Bustamante, 1995).

Artesanalmente existen 3 formas de obtenerse el colorante de cochinilla: por asfixia de los insectos en bandejas cubiertas por plástico; con el uso de insumos químicos como el hexano o la ceniza; y por exposición directa al sol, todas terminan con un periodo de secado y futura molienda.\(^{16}\)

Color y pH:

El grupo carboxilo –COOH y los cuatro grupos –OH fenólicos, de las posiciones C3, C5, C6 y C8 desprotonables, contribuyen a los cambios de color y de pH del ácido carmínico; anaranjado a pH=3.0, rojo azulado a pH=5.5 y purpura a pH=7.0. La curva de titulación del ácido carmínico con una solución 0.1M de hidróxido de sodio presenta tres inflexiones de 0.9, 1.9 y 2,9 moles de soda por mol de ácido carmínico.

Complejante:

El ácido carmínico reacciona con los iones metálicos formando complejos coloreados, como se muestra en la tabla 1, a continuación:

Carmín Liquido K3

Carmín Liquido K3, es el nombre comercial que le da la casa de colorantes GlobeNatural, al colorante natural obtenido de la solución alcalina del colorante natural carmín, agua con hidróxido de potasio y propilenglicol.

Es un líquido oscuro, rojo magenta.
2.3. Teoría del color

La existencia del color exige la conjunción de tres circunstancias: una fuente de iluminación, un objeto que interactúe con la luz procedente de dicha fuente y el ojo humano para observar el efecto resultante. En ausencia de cualquiera de estos, podría decirse que el color no existe. El color es una percepción.
La descripción completa de la apariencia de un objeto requiere de muchas ciencias, desde la física hasta la psicología. La apariencia de un objeto puede verse afectada por translucidez, reflejo, textura de la superficie, tamaño de la muestra, área iluminada, elementos circundantes y posición. Las percepciones del color están influenciadas por iluminación y estados específicos del observador.

El entrenamiento y la experiencia permiten controlar la magnitud en la que nuestras evaluaciones de color están siendo influenciadas por atributos de la apariencia. El equilibrio apropiado entre la evaluación visual e instrumental crean una descripción y especificación de color efectivas.

Los efectos de textura, brillo, reflejo metálico, brillo e iridiscencia17 varían con el arreglo angular de la fuente de luz, muestra y visor/detector. El brillo afecta las percepciones de luminosidad y saturación de color.

2.3.1. Fuente de luz

Una fuente de luz es un objeto físico capaz de producir luz. Un iluminante es un juego de números que pueden o no representar una fuente de luz física. Las fuentes luminosas pueden ser naturales (el Sol) o artificiales (una lámpara).

La luz es el nombre que se le da a la radiación electromagnética en la banda de 400 a 700 nanómetros, la cual constituye la radiación visual para los seres humanos. Las radiaciones que limitan el espectro de luz visible son los rayos ultravioleta (menores 400 nm) y los infrarrojos (mayores 700 nm).

17 La iridiscencia es un fenómeno óptico caracterizado como la propiedad de ciertas superficies en las cuales el tono de la luz varía de acuerdo al ángulo.
Cada componente del espectro tiene una longitud de onda diferente, como se observa en la tabla 2.

Tabla 2. Longitud de Onda por Color

<table>
<thead>
<tr>
<th>Longitud de Onda (nm)</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-430</td>
<td>Violeta</td>
</tr>
<tr>
<td>430-485</td>
<td>Azul</td>
</tr>
<tr>
<td>485-570</td>
<td>Verde</td>
</tr>
<tr>
<td>570-595</td>
<td>Amarillo</td>
</tr>
<tr>
<td>595-610</td>
<td>Naranja</td>
</tr>
<tr>
<td>610-700</td>
<td>Rojo</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

La mayoría de las fuentes de luz contienen cantidades de luz a diferentes longitudes de onda y pueden ser descritas por la cantidad de energía a cada longitud de onda, como se muestra en la imagen.
Fuentes de luz incandescentes emiten más luz a longitudes de onda largas (naranja y rojo). Luz de Día es una fuente de luz más uniforme, casi la misma energía a todas las longitudes de onda visibles.

Las lámparas fluorescentes emiten fuertemente a unas pocas longitudes de onda. Existen varios iluminantes estandarizados por la CIE18, y los más utilizados son:

- Luz de Día normalizada- D65
- Luz de normalizada lámpara incandescente - A
- Luz fluorescente estándar – TL84

2.3.2. Objeto observado

El color de un objeto es determinado por la luz reflejada sobre este.

Un sustrato es blanco cuando refleja toda la luz que incide sobre este, y negro cuando absorbe toda la luz, es decir, no hay reflejo de luz. Los sustratos son coloridos cuando absorben ciertos rayos del espectro y reflejan los restantes.

Cuando se quiere dar color a un sustrato, se modifica la luz reflejada, de modo tal de sensibilizar nuestra vista al color deseado. Esto se logra con la aplicación de

18 CIE: Commission Internationale d’ l’Eclairage (Comisión Internacional de la Iluminación)
colorantes que absorben selectivamente todas las bandas del espectro menos la deseada a ser reflejada.

Descripción de la sensación visual del color

Existen muchas maneras de describir un color, pero se utilizan tres datos para su descripción universal en un espacio específico de tres dimensiones, según:

- **Matiz o Tono (HUE)**
 Es la tonalidad del color propiamente dicho: Amarillo, rojo, verde, azul, etc. La representación del tono se puede esquematizar mediante “el círculo cromático”

- **Croma (CHROMA)**
 Es la saturación o pureza de un color cromáticamente puro (monocromático).

- **Luminosidad (LIGHTNESS)**
 Es la claridad de un cuerpo que puede trasmitir o reflejar más o menos luz. Su variación es independiente del tono y croma.
2.3.3. Colorimetría

El color no se puede medir, la observación de este es subjetiva; depende del observador y varía según la apariencia, forma, textura, fondo, ubicación, etc. Es por eso que la colorimetría consiste en la técnica de medición del color transformando la sensación subjetiva en datos objetivos expresados numéricamente.

La Colorimetría es la ciencia que estudia los colores cuantitativamente, caracterizándolos mediante números, para que una vez que se encuentran cuantificados poder operar con ellos y deducir características de los colores obtenidos mediante mezclas, así como para averiguar las cantidades que hay que mezclar de varios colores elegidos y considerados como primarios para obtener el color deseado.

Para lograr cuantificar la impresión sensorial, es necesario normalizar las fuentes de luz y la sensibilidad del ojo humano.
Sistemas CIELAB

El espacio CIELab fue establecido por la Comision Internacionale de L'Eclairage (CIE, 1978).

Este sistema define las magnitudes colorimétricas que se derivan matemáticamente de los valores triestímulo y pueden considerarse una respuesta de los observadores patrones a un estímulo luminoso. Tratando de imitar a los observadores reales, estas respuestas se hacen depender del tipo de estímulo y del blanco de referencia. Los estímulos dependientes aparecen a los observadores reales como estímulos no autoluminosos, es el caso de cualquier superficie o material no emisor de luz. Como blanco de referencia se toma el difusor perfecto cuyos valores triestímulo son los del iluminante utilizado y se designan Xn, Yn, Zn.

Coordenadas cromáticas (X, Y, Z)

La CIE recomienda el uso de las coordenadas de cromaticidad para especificar la posición de un color en un mapa de 2 dimensiones: Diagrama de Cromaticidad, donde los parámetros están basados en la distribución de energía espectral (SPD) de la luz emitida por el objeto coloreado, y está factorizado por las curvas de sensibilidad, las cuales han sido medidas por el ojo humano.

Se puede obtener cualquier color con la combinación de un determinado conjunto de tres colores primarios (tales como azul, verde y rojo) estos son los que están representados sobre el diagrama de cromaticidad por el triángulo construido uniendo las coordenadas de los tres colores.
En el diagrama se observa:

- El borde que representa la máxima saturación de los colores espectrales puros.
- El punto blanco o acromático E, que también se puede lograr con muchas mezclas diferentes de luces.
- La "línea de los morados" en la parte inferior representa los colores que no pueden ser producidos por cualquier longitud de onda de luz simple.
- El diagrama forma el área de todos los tonos perceptibles.

2.4. Proceso de teñido de la fibra proteica de Alpaca Suri

Gráfico 1. Diagrama de Flujo del Proceso de la Industria Textil De la Alpaca

2.4.1. Proceso de teñido de la fibra de Alpaca Suri por agotamiento

El teñido es un proceso que se basa fundamentalmente en incorporar a la fibra en forma uniforme una materia colorante soluble, natural o sintética, bajo determinadas condiciones.

El teñido es una modificación físico-química del sustrato de forma que la luz reflejada provoque una percepción del color. Los productos que provocan estas modificaciones son denominados, materias colorantes.

Las materias colorantes son los compuestos orgánicos capaces de colorear los sustratos textiles o no textiles, de forma que el color sea relativamente resistente (sólido) a la luz y a tratamientos húmedos.

En el proceso de teñido por agotamiento el colorante es desplazado del baño a la fibra. En este proceso, hay contacto frecuente entre el baño y la fibra mediante el movimiento de uno o las dos partes. El colorante se desplaza del baño a la fibra debido a la sustantividad\(^{19}\).

El fenómeno total de teñido se puede separar en dos partes:

Una parte incluye el aspecto dinámico, determinado por las reglas que gobiernan la velocidad a la cual el colorante pasa desde el baño a la fibra, la velocidad a la que ésta se difunde desde la superficie al centro y la dimensión que estos factores son influenciados por agentes externos de la operación como la temperatura, concentración del baño, relación de baño, etc.

La otra parte está relacionada con la afinidad, la cual se define como aquellos factores que causan la retención del colorante en la fibra. No se produce coloración o teñido sino existe afinidad entre colorante y fibra.

\(^{19}\) Sustantividad: Es la propiedad del colorante de desplazarse del baño de tintura hacia la fibra.
El proceso de tintura se desarrolla en tres fases:

1. **Adsorción**\(^{20}\): transferencia de la molécula de colorante del medio externo, el baño, a la superficie del substrato a teñir, la fibra.

2. **Absorción**\(^{21}\): difusión de la molécula de colorante al interior de la fibra.

3. **Fijación o unión** de las moléculas de colorante en los sitios activos disponibles en la estructura química de la fibra.

En el presente estudio después de la etapa de teñido sigue una etapa de mordentado para la fijación del colorante en la fibra.

El colorante se fija a la fibra a través de puentes de hidrógeno o disulfuro entre los grupos funcionales que poseen la fibra y el colorante.

\(^{20}\) Adsorción: fenómeno de adherencia superficial entre dos sustancias. Las moléculas de una y otra no se interpenetran, tan solo quedan relacionadas al nivel de capas exteriores. Se puede distinguir entre la adsorción en la superficie de un líquido y la adsorción en la superficie de un sólido, ya que solamente los líquidos y sólidos presentan en virtud de las características de sus estados una superficie que delimita su volumen. La quimiadsorción es cuando se producen interacciones químicas entre adsorbido y adsorbente, el fenómeno asume características diferentes ya que se trata de una verdadera reacción química, si bien limitada la capa superficial; el fenómeno procede a una velocidad que aumenta al aumentar la temperatura y tiene lugar a través de un mecanismo similar al de las reacciones químicas. Fuente: Enciclopedia de la Ciencia y de la Tecnología, DANAЕ, Ediciones OCEANO.

\(^{21}\) Absorción: fenómeno que determina la transferencia de una sustancia desde el medio ambiente al medio interno de una célula. Difusión de gases en líquidos y sólidos o de líquidos en sólidos. Fuente: Enciclopedia de la Ciencia y de la Tecnología, DANAЕ, Ediciones OCEANO.
Imagen 7. Modelo de la interacción entre la fibra y diversos mordiente.

Fuente: La química del Color, Robert M. Christie, 2003

2.4.2. Productos Auxiliares

Un producto auxiliar de teñido implica en su significado ayuda o asistencia a la tintura. Estos incrementan las propiedades de los productos terminados y mejoran la calidad del teñido, ayudan a conseguir una tintura homogénea en la superficie textil, mejorando la penetración y la estabilidad del baño, las solideces finales, productos libres de fallas y sin problemas en el menor tiempo posible, entre muchas otras. Pero es necesario aclarar que para cada variable de las mencionadas anteriormente caben distintas alternativas dependiendo del tipo de colorante (o fibras) que se trate.

Los auxiliares de teñido forman un grupo muy heterogéneo de compuestos químicos, en general, son tensoactivos, compuestos inorgánicos, polímeros y oligomeros solubles en agua y agentes solubilizantes.
Los productos auxiliares pueden poseer cargas eléctricas, pudiéndolos así clasificar en aniónicos, catiónicos, no iónicos y anfóteros.

Con el fin de evaluar qué tipo de auxiliares son los más usados en la tintorería de textiles, el impacto que tienen sobre el medio ambiente, su influencia en el éxito del teñido de productos textiles, su procedencia y costo, se seleccionó los productos auxiliares más relevantes para la investigación, y son:

A. Dadores de pH

Un buen resultado para todos los procesos de tintorería depende del pH, acidez o basicidad del baño.

En el caso del teñido el pH adecuado es importante para lograr llegar al punto isoeléctrico\(^{22}\) de la fibra permitiendo así su teñido.

El pH del baño de tintura es uno de los medios para controlar la subida del colorante a la fibra, logrando así su agotamiento final. El ácido durante el proceso de tintura ayuda a la fijación y la disolución del colorante en la tintura.

“Ácido Acético”

Características:

Tiene por fórmula \(\text{CH}_3\text{COOH}\), peso molecular igual a 60; es miscible con el agua en todas las proporciones. El ácido acético se presenta en el mercado en las más diversas concentraciones y grados de pureza, desde el ácido químicamente puro de 100% - acético glacial - hasta el ácido piroleñoso en bruto. Puede ser ácido acético de oxidación, de fermentación y de madera.

Propiedades:

\(^{22}\) Punto Isoeléctrico: Es el pH para el cual la concentración del ion híbrido de una proteína es máxima y el movimiento de las moléculas en un campo eléctrico es nulo. Punto donde los radicales de la fibra están más aptos o activos para recibir a los iones del colorante, por lo tanto la fibra no sufre debilitamiento.
Presentación; líquido incoloro de olor picante, llamado también ácido del vinagre.

- Punto de ebullición: 118.1 °C
- Densidad: 1.0492
- El ácido puro es miscible en todas las proporciones de agua y los disolventes orgánicos corrientes.
- Las mezclas de ácido acético y agua generalmente son muy corrosivas, su acción sobre los aceros inoxidables es interesante en la elección de los materiales de equipo.

Campos de aplicación:

- En el tratamiento de textiles
- Empleo dilatado en tintorería y estampación
- Como fijador e igualador en el teñido de la lana, algodón y seda; para avivar los tintes sobre seda
- Para la preparación de mordientes de ácido acético como ingrediente en la estampación de la seda, lana o indianas, al objeto de contrarrestar la precipitación de las lacas de tanino u otras lacas formadas en el estampado
- Para acidular los baños destinados al tratamiento ulterior de los tintes sobre algodón; para comunicar al algodón mercerizado el crujido propio de la seda: para disolver materias colorantes, y para la corrección del agua.
- También se usa como sustituto del ácido fórmico.

B. Mordiente

Es una sustancia química natural o sintética. Su función principal es favorecer la fijación del colorante en las fibras textiles. Antiguamente se utilizaban productos naturales como cenizas, actualmente se utilizan sales metálicas de aluminio, cobre, etc., debido a su acción más enérgica.
Según bibliografía “La acción del mordiente rompe el enlace hidrogenado situándose el ion metálico del mordiente en la proximidad del átomo hidrogeno de la fibra. Al introducir la fibra mordida en la disolución del tinte, se forma un conjunto ion del mordiente-tinte que es insoluble. La naturaleza química de la disolución mordiente-tinte puede ser acida o alcalina”. (Roquero, Córdoba; 1981; p.23)

El mordiente al colocarlo en agua caliente, se disuelve. En este proceso la sal se disocia, y el metal queda como catión y éste se une a la fibra textil y forma un complejo con la molécula del colorante. El metal determina la tonalidad final de la fibra (Paredes, 2002).

La función del mordiente es unirse a la fibra y al colorante a través de enlaces covalente coordinados y de esta forma fijar el colorante.

Es importante resaltar que es posible variar el matiz de una tinada acidificando un baño alcalino o viceversa. Al igual que es posible obtener distintos matices cambiando el mordiente con el mismo colorante.

“Alumbre: Sulfato Alumínico Potásico”

Características

Es una sal doble de aluminio y potasio hidratada (con 12 moléculas de agua) cuya fórmula es KAl (SO₄)₂.12H₂O, se trata de una sal cristalina muy soluble en agua de ligero sabor entre dulce y astringente. Esta sal se presenta en forma de cristal y corresponde a la categoría de alumbres, y es el más común de ellos.

Propiedades:

- Estado de agregación: Sólido
- Apariencia: Cristalino, incoloro y transparente
- Densidad: 1753 kg/m³; 1.753 g/cm³
- Masa molar: 474,1 g/mol
- Punto de fusión: 365,15 K (92 °C)
- Punto de ebullición: 473,15 K (200 °C)
- Solubilidad en agua: 70 g en 100 g de agua

Campos de aplicación:
- Sirve de mordiente en tintorería para la fijación del colorante.
- Es una sal astringente que se emplea para aclarar las aguas turbias colocándose en los filtros donde pasan las corrientes
- Se emplea en la fabricación de papel y antitranspirantes.
- En el curtido de pieles
- En la industria farmacéutica, cosmética y alimentaria.
- Se utiliza en una forma u otra como fertilizante del suelo por su contenido de potasio.

C. Colorantes

Colorante “Globe Yellow 7%”

Colorante natural producido a partir de la Cúrcuma (Cúrcuma Longa)

Propiedades:
- Presentación: líquido siruposo amarillo rojizo oscuro.
- Concentración: no menor al 7% de Curcumina
- pH: 5 - 8
- Solubilidad: soluble en agua y soluciones de pH ácido.
- Estabilidad: pH Estable entre 3 – 6. a luz y calor.
- Tonalidad: da matices amarillos.
Colorante “Globebix EXL 3%”

Colorante natural extraído de la semilla del achiote (Bixa Orellana.).

\[\text{Propiedades:}\]

- Presentación: líquido marrón rojizo oscuro.
- Concentración: no menor al 3% de Bixina
- pH: 12.5 – 13.5
- Solubilidad: soluble en agua.
- Estabilidad: estable a luz y calor.
- Tonalidad: da matices que varían desde el amarillo claro hasta el naranja rojizo.

Colorante “Carmín Liquido K 3”

Solución alcalina del colorante natural carmín (agua con hidróxido de potasio y propilenglicol)

\[\text{Propiedades:}\]

- Presentación: líquido oscuro rojo magenta
- Concentración: no menor al 3% Acido Carmínico
- pH: 10.5 – 13.5
- Solubilidad: soluble en agua.
- Estabilidad: a pH mayores a 3.5 no precipita. estable a luz y calor.
- Tonalidad: da matices que varían desde el rosado al rojo.

\[\text{Anexo 3. Productos auxiliares. Página 183.}\]

\[\text{2.4.3. Curvas de teñido}\]
Gráfico 2. Curva de Teñido General

Fuente: Catálogo Textile Effects LANASET® dyes. Dyeing system for wool and wool blends

Gráfico 3. Curva de Teñido Modificada para Colorantes Naturales

Fuente: Elaboración Propia
En el gráfico 2 se observa la curva general de teñido según el catálogo de colorantes Lanaset, donde se inicia el proceso con un lavado previo de la fibra a teñir, se trabaja a una temperatura de 60°C por 20 minutos, con un detergente industrial aniónico.

Después viene el proceso de teñido propiamente dicho, donde se procede a añadir los auxiliares y colorantes al baño de teñido a 40°C, con homogenización por minutos antes de empezar a subir la curva de teñido. La gradiente \(^{23}\) de subida es de 1-2°C/min. La temperatura de agotamiento a 98°C durante 20 – 60 minutos.

En el gráfico 3 se observa la curva de teñido específica utilizada para la investigación, donde después de la curva de teñido convencional, se enfría el primer baño de teñido a 70°C para proceder con la siguiente etapa de mordentado en el mismo baño, y se añade el alumbre, como también el dador de ácidos/álcalis, y se empieza a subir nuevamente la gradiente de temperatura a 98°C por 60 minutos.

Después de teñido se procede a los tratados si se requiere al igual que el suavizado.

2.4.4. Variables del Proceso

Se manejaron diferentes variables en el proceso de teñido y mordentado, unas más significativas que otras por lo que se decidió separar las pruebas en dos etapas: preliminar y de estudio propiamente.

Las variables consideradas dependientes en las pruebas preliminares, tales como: concentración de colorante, tipo de mordiente, auxiliares en la etapa de teñido, número de baños, dador de ácido/álcali, tiempo de agotamiento y punto de inflexión, se utilizaron como parámetros en las pruebas propias de la investigación.

\(^{23}\) Gradiente de temperatura: Se denomina gradiente a la variación de temperatura por unidad de tiempo.
Tabla 3. Variables del Proceso

<table>
<thead>
<tr>
<th>PROCESO DE TEÑIDO Y MORDENTADO</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>Calidad Hilado</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solideces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de Ácido/Álcali</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiempo de Teñido</td>
<td></td>
<td></td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td>Tiempo de Mordentado</td>
<td></td>
<td></td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td>Temperatura de Teñido</td>
<td></td>
<td></td>
<td>98°C</td>
</tr>
<tr>
<td></td>
<td>Temperatura de Mordentado</td>
<td></td>
<td></td>
<td>98°C</td>
</tr>
<tr>
<td></td>
<td>Relacion de Baño</td>
<td></td>
<td></td>
<td>1:20</td>
</tr>
<tr>
<td></td>
<td>Porcentaje de Colorante</td>
<td></td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Numero de Baños</td>
<td></td>
<td></td>
<td>1 Baño</td>
</tr>
<tr>
<td></td>
<td>Tipo de Mordiente</td>
<td></td>
<td></td>
<td>Alumbre</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
2.4.5. Descripción del Proceso de Teñido

Gráfico 4. Algoritmo del Procedimiento Experimental

Fuente: Elaboración Propia.
Descripción del Procedimiento Experimental

1. Etapa de Lavado: El proceso de teñido se inicia con el LAVADO de la madeja a teñir de sustrato alpaca Suri, con el objetivo de quitar cualquier presencia de grasa propia de la fibra animal, que pueda alterar el proceso de tintura. La temperatura utilizada fue a 60°C por 20 minutos, con un detergente industrial aniónico.

2. Etapa de Teñido: Una vez humectada la fibra, se inicia la etapa de TEÑIDO, donde se procede a añadir los auxiliares que acondicionarán el baño para que la fijación del colorante sea homogénea, y el ácido para llegar al pH 4.5, que es el punto isoeléctrico de esta fibra. Los auxiliares a utilizar son:
 - Igualante 1%
 - Ácido Acético 3%

Los cuales tienen un tiempo de 15 minutos de homogenización, antes de adicionar los colorantes al 2% de concentración, y también tener un tiempo de 20 minutos de homogenización, antes de empezar a subir la temperatura. La temperatura sube a una gradiente de 1.3 °C/min hasta llegar a los 98°C, temperatura a la cual se produce la adsorción y absorción de colorante, y luego mantiene por 60 minutos, para asegurar la fijación del mismo.

Al término del tiempo, se evalúan los baños de agotamiento para asegurar que el colorante ha migrado en su mayoría a la fibra.

3. Etapa de Mordentado: esta etapa se realiza en el mismo baño una vez terminado el teñido, se baja la temperatura a 70°C y se añade el alumbre, como también el dador de ácidos y álcals, y se empieza a subir la temperatura a 98°C por un tiempo de 60 minutos. Como resultado se tienen fibras de suri coloreadas con diferente matiz para cada tipo de ácido/álcali, trabajando con la misma concentración de colorante y diferentes concentraciones de mordiente.
4. Pruebas de Control de Calidad: La última etapa del proceso es la verificación de los parámetros finales del hilado, que son la CALIDAD DEL HILADO, MATIZ y SOLIDEZ. La calidad del hilado se verifica con las pruebas de RKM normadas, el Matiz con el método de colorimetria y la solidez con las normas establecidas para sus diferentes tipos.
CAPITULO III: MATERIALES Y MÉTODOS

3.1. Lugar de Ejecución

Las pruebas realizadas en el presente estudio se efectuaron en el laboratorio de tintorería de la Industria Alpaquera Lanera - Arequipa.

3.2. Insumos, Reactivos, Materiales y Equipos

3.2.1. Insumos y Reactivos

- Colorante: Globe Yellow 7%. Extraído de la planta cúrcuma longa.
- Colorante: Globex EXL 3%. Extraído de la semilla del arbusto Bixa Orellana.
- Colorante: Carmín Líquido K3. Extraído del insecto de las pencas del nopal (tuna).
- Fibra de Alpaca Suri.
- Sulfato Alumínico Potásico: agente de mordiente.
- Albegal A: dispersante y agente de igualación en tintura por procedimiento de agotamiento.
- Tensoactivo con propiedades humectantes, emulsificantes y de dispersión.
- Dispersante
- Ácido Acético glacial al 99% de pureza
- Ácido Cítrico: Porcentaje por peso 99.8%
- Amoniaco: QP al 99%
- Carbonato de Sodio: QP 99%
- Reductor
- WOB: detergente estándar sin abrillantador óptico para la solidez al lavado según norma AATCC.
- Miralan Q: agente protector de fibra.
• Bitartrato de Potasio: Comúnmente conocido como Crémor tártilar.
• Silicona
• Sulfato de sodio: sal agente de igualación

3.2.2. Equipos e instrumentos

• Titulador madejera de laboratorio: Marca MesdanLab.
• Maquina Teñidora de Laboratorio: Marca Ahiba, Rango de temperatura de 20-140°C, Exactitud del control de la temperatura de teñido ±2ºC.
• Dinamómetro: Marca MesdanLab
• Frichtómetro: Marca MesdanLab, cuenta con un contador de lectura digital. El instrumento se suministra con superficies de roce de diámetro 1,6 cm y 3,2 cm y con dos pesos de 9 N y 22 N.
• Cabina de Luz, Spectrolight: Marca X-Rite GretagMacbeth. Cuenta con Cinco diferentes fuentes de luz incluyendo Luz de Día (D75, D65 ó D50), incandescente de hogar (A), Ultravioleta (UV), Fría Fluorescente (CWF) y Fluorescente (TL84 ó U30).
• Espectrofotómetro: Marca Datacolor, Modelo Datacolor 600. Con un campo de longitud de onda de 360 a 700 nm. Repetibilidad de lecturas máximo 0.01 de desviación estándar.
• Torsiómetro: Marca MesdanLab
• Secadora de Muestras: Marca Thermo Scientific Heratherm. Temperatura de 50°C a 250°C.
• Balanzas: Marca Mettler Toledo Balanza Analítica Electrónica. Capacidad de 0.02gr a 410gr.
• Phmetro: Marca Mettler Toledo SG2. Intervalo de medición de 0.00 a 14.00 pH. Resolucion de 0.01 pH.
• Pipetas de vidrio: capacidades de 0.5 ml a 25 ml.

Ver Anexo 4. Equipos e Instrumentos. Página 199.
3.3. Métodos

3.3.1. Métodos para las variables independientes

A) Método de medición de pH

Método de prueba para medir el pH tanto del baño de teñido como de mordentado.

Principio: La determinación del pH en el agua es una medida de la tendencia de su acidez o de su alcalinidad. Este método determina el pH, midiendo el potencial generado (en milivolts) por un electrodo de vidrio que es sensible a la actividad del ión \(\text{H}^+ \), este potencial es comparado contra un electrodo de referencia, que genera un potencial constante e independiente del pH. El electrodo de referencia que se utiliza es el de calomel saturado con cloruro de potasio, el cual sirve como puente salino que permite el paso de los milivolts generados hacia al circuito de medición.

Materiales y Equipo:
- pHmetro
- Baños de teñido y mordentado

Metodología:
- Inserte los electrodos en la muestra y lea el pH correspondiente
- Elevar y enjuagar los electrodo con agua destilada
- Anotar el valor del pH con las cifras significativas de acuerdo a la precisión del medidor de pH que se esté utilizando.

B) Concentración de Mordiente por Método Gravimétrico

Método de prueba para agregar la cantidad adecuada de mordiente, para la fijación del colorante natural.

Principio: El análisis gravimétrico o gravimetría consiste en determinar la cantidad proporcionada de un elemento, radical o compuesto presente en una muestra, eliminando todas las sustancias que interfieren y convirtiendo el constituyente o
componente deseado en un compuesto de composición definida, que sea susceptible de pesarse. La gravimetría es un método analítico cuantitativo, es decir, que determina la cantidad de sustancia, midiendo el peso de la misma con una balanza analítica

Materiales y Equipo:
- Balanza analítica
- Mordiente

Metodología:
- Pesar la cantidad necesaria requerida de mordiente
- Agregar a los baños de mordentado.

3.3.2. Métodos para las variables dependientes

A) Método de medición de la Calidad del Hilado

Método de prueba que mide los requisitos de resistencia (RKM24) y elongación de un hilo, que dependen principalmente de su uso final. Se necesita una fuerza mínima y propiedades de elongación para evitar una rotura del hilo o que se dañe en las operaciones posteriores, así como evitar el daño a los productos finales en el tejido.

Normas: ASTM25 D2256; ASTM D1578; BS26 en ISO 2062

Principio: Ensayo donde se somete al hilado a una fuerza de tracción hasta provocar su rotura, los parámetros que se obtienen de estos análisis son: Resistencia a la rotura que puede expresarse en unidades de fuerza, tenacidad, longitud de rotura, trabajo, alargamiento a la rotura ya sea en valores absolutos (longitud) o valores relativos (unitario y porcentual), Tiempo de rotura que es el intervalo de tiempo transcurrido desde

24 RKM: es la resistencia kilométrica.
25 American Section of the International Association for Testing Materials, organismo de normalización de los Estados Unidos de América.
26 British Standard, organismo colaborador de ISO y proveedor de estas normas
el inicio del ensayo hasta alcanzar la rotura y su valor está relacionado de manera inversa al incremento de la carga o alargamiento del espécimen.

La rotura de los especímenes del ensayo es provocada por el movimiento uniforme de un eje sinfín, cuya parte superior tiene una mordaza para la sujeción de uno de los extremos del espécimen; el otro extremo es tomado por la mordaza superior, la que está conectada al péndulo. Al aplicar la carga, el péndulo se desplaza de su posición vertical (posición de reposo) por la resistencia que ofrece el espécimen y la cantidad de desplazamiento indica la carga. En el momento de producirse la rotura del espécimen, instantáneamente, el péndulo es asegurado gracias a un trinquete a una cremallera, permaneciendo estacionario en la carga máxima.

Materiales y Equipo:

- Dinamómetro
- Muestra de Hilado

Metodología:

- Colocar la muestra de hilo a evaluar en el dinamómetro.
- Regular la tensión del hilo, al colocarlo entre las mordazas del dinamómetro. En la mayoría de normas de ensayo se recomienda una tensión inicial del hilo de 0,5 cN/tex.
- Accionar el botón de encendido para proceder al estiramiento del hilo.
- Según la mayoría de normas de ensayo, la velocidad debe ajustarse de tal manera que el tiempo de rotura promedio de todos los ensayos sea de 20 ± 3 segundos. Los ensayos realizados con tiempos de rotura inferiores a 17 o superiores a 23 segundos deben descartarse. Al disminuir el tiempo de rotura (ensayos rápidos) aumenta, normalmente, la resistencia a la tracción del hilo.
- Leer los valores que muestra el equipo.
B) Método de medición del Matiz

Método de prueba que no solo se realiza visualmente con la experiencia del matizador, sino también que esta información se respalda a través de la Colorimetría con el equipo espec trofotómetro Datacolor 600, que brinda datos cuantitativos de la descripción del color.

Principio: Se realizan lecturas con el uso del software Datacolor Tools, sistema de Tolerancia de Pasa/Falla para controlar y administrar el análisis de color de principio a fin a través de un haz de luz. Mostrando resultados de rápida lectura, de tolerancia establecida para la aprobación del color lote a lote, con graficas de fuerza color.

Materiales y Equipo:

- Espectofotómetro
- Software Datacolor Tools.
- Muestras de teñido a comparar.

Metodología:

- Abrir el Software Datacolor Tools.
- Colocar la muestra patrón o estándar en la apertura del espectofotómetro.
- Realizar la medida, con un promedio de 3 lecturas por muestra.
- Colocar la muestra lote a comparar en la apertura del espectofotómetro.
- Realizar la medida, con un promedio de 3 lecturas por muestra.
- Leer los resultados que da el software.

Resultados relevantes para la investigación:

- Tolerancia Pasa/Falla de color, en CIELab, con una desviación estándar máxima DE=1
- Fuerza color de punto de absorción máxima.

C) Método de medición de Solideces

C.1. Solidez del color al Frote: Seco y Húmedo

63
Método de prueba designado para determinar la cantidad de color transferida de la superficie de los materiales de textil teñidos a otras superficies o hacia un área adyacente del mismo tejido por frotación.

Norma: AATCC 8-2007 e ISO 105 x 12.

Principio: Se realizan métodos de prueba que emplean cuadros de tela blanca (testigos estandarizados) en seco y húmedo. Una pieza teñida se somete a prueba frotándola con la tela de prueba blanqueada bajo condiciones controladas. Para la solidez al frote húmedo es con un pickup de 65%+/-.

El color transferido a la tela blanca de prueba es evaluada mediante una comparación con la Escala de Grises para Manchado o Escala de Grises de Transferencia de Color para asignarle el grado alcanzado. El Puntaje va de 0-5. Siendo 5 la mejor puntuación.

Materiales y Equipo:

- Frictómetro.
- Pesa estandar de 9 N.
- Testigo cuadrado de tela de algodón blanca
- Tela, hilado o mecha textil
- Escala de grises para transferencia de color o Escala Cromática de transferencia de color 9-Grados.

Metodología:

- Colocar la muestra textil teñida en la base del frictómetro, dejándola estirada sobre la tela de esmeril con el lado largo en el sentido de la frotación.
- Colocar un portamuestras sobre la muestra, como un medio adicional para evitar el desplazamiento de la muestra.
- Utilizar la rosca metálica espiral especial para mantener en su lugar el testigo cuadrado de prueba.
• Bajar el dedo cubierto con el testigo sobre la muestra. Con el brazo colocado en el extremo frontal, hacer girar la manivela 10 vueltas completas a la velocidad de una vuelta por segundo para deslizar el dedo cubierto por el testigo (tela blanca) hacia adelante. Utilizar la pesa estándar de 9N.
• Retirar el testigo cuadrado de tela blanca de prueba y valorar el frote con la escala de grises.
• Para la solidez al frote húmedo, humedecer la tela testigo blanca a un 65% de su peso, Y proceder de la misma manera.

C.2. Solidez del color al Lavado

Método de prueba de diagnóstico acelerado para determinar los cambios de textiles teñidos cuando están expuestos al detergente (simulando lavados caseros múltiples, típicamente 10 o más).

Norma: AATCC 61-2010 e ISO 105-C06

Principio: Una muestra de textil teñida es lavada junto con un testigo de multifibra, bajo condiciones definidas en cuanto a tiempo, concentración del detergente y de temperatura, para poder determinar si la decoloración ocurrirá después de lavados caseros múltiples. La diferencia del color entre el espécimen de la prueba y el textil original se determina instrumentalmente o visualmente.

Materiales y Equipo:

• Tejido de Prueba Multifibra\(^{27}\) tipo DW.
• Agua destilada o desionizada.
• 2003 AATCC Detergente líquido Estándar de Referencia sin blanqueado óptico (WOB)
• Escala de grises para cambio de color.

\(^{27}\) Los testigos de multifibras son tejidos compuesto de bandas (1.5cm) de diferentes fibras tenemos el tipo DW(bandas de: acetato, algodón, poliamida, poliéster, acrílica, lana) y el tipo TV (bandas de triacetato, algodón, poliamida, poliéster, acrílica, viscosa).
Maquina Teñidora de tubos

Metodología:
- Se coloca la muestra textil teñida y el testigo multiflaira en partes iguales, las cuales debe estar en contacto directo, coser o engrapar el teñido a la multiflaira.
- Preparar el detergente WOB a 5gr/litro.
- Colocar la dilución del detergente en los tubos de la maquina en relación 1:20, y en ella la muestra textil y multiflaira.
- Tapar los tubos correctamente y colocarlos en la máquina programada a una temperatura de 40ºC por 30 minutos.
- Descargar los tubos del equipo, sacar la muestra, enjuagarla y secarla.
- Evaluar y valorar el manchado en la multiflaira con la escala de grises.

C.3. Solidez del color a la Luz

Este método de prueba proporciona los principios y procedimientos generales que actualmente se usan para determinar la resistencia a la luz del sol o una fuente de luz artificial de las materias textilres de todos los tipos y para todos los colorantes, acabados y tratamientos hechos a dichos textilres.

Norma: AATCC 16-2004 e ISO 105-E02

Principio: Las muestras del material de textil probado y los estándar convenidos en comparación se exponen simultáneamente a una fuente de luz bajo condiciones especificadas. El color a la luz del espécimen es evaluado por la comparación del cambio del color de la porción expuesta a la porción enmascarillada, o del material original no expuesto usando la Escala de Grises de AATCC para el cambio del color, o por la medida del color instrumental. Las clasificaciones de la solidez a la luz son logradas por la evaluación de una serie de exposiciones a luminosidad estándares de la AATCC, Solidez a la Luz Azul L4 Estándar.
Materiales y Equipo:

- Equipo de descoloramiento o luz Lámpara de Arco – Xenón
- Cartulina
- Muestra teñida
- Escala de grises para transferencia de color

Metodología:

- Tomar el hilado teñido, enmascarar la mitad.
- Exponer la muestra preparada al sol, durante 20 horas.
- Después de transcurrido el tiempo, retirar la máscara.
- Evaluar la parte expuesta versus la no expuesta.

Anexo 5. Estándares de calidad según normas ISO y AATC. Página 206.

3.4. Métodos de validación de resultados

Prueba Preliminar 1: Determinación de concentración de colorante.

Se decidió trabajar con intensidades intermedias de color para poder hacer una evaluación cuantitativa de solideces, igualación, matiz e intensidad, por lo que se probó con concentraciones de colores de 2%, 4% y 6%.
Tabla 4. Variables y Parámetros de la Prueba 1

<table>
<thead>
<tr>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinación de concentración de Colorante</td>
<td>Porcentaje de Colorante</td>
<td>Igualación Intensidad Agotamiento</td>
<td>Numero de Baños</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba Preliminar 2: Determinación de Mordiente.

Se probaron diferentes tipos de mordiente evaluando: cubrimiento punta raíz, solideces e impacto ambiental.

Se trabajó con Sulfato Alumínico potásico (alumbre), cloruro de estaño, sulfato de hierro y sulfato de cobre, en concentración 5% para todos.

Se descartó definitivamente el uso del bicromato de potasio, cloruro de estaño y sulfato de cobre por ser venenosos y cancerígenos.

Posteriormente se trabajó con alumbre y sulfato de hierro, en el mismo porcentaje, por ser estos los mordientes que van de acuerdo a las normas ambientales.

La utilización de distintos mordientes con un mismo colorante, va a dar como resultado una gama de matices diferentes debido al pH que cada mordiente tiene y al enlace que forma colorante-ion metálico.

Tabla 5. Variables y Parámetros de la Prueba 2

<table>
<thead>
<tr>
<th>Determinacion de Mordiente</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tipo de mordiente</td>
<td>Cubrimiento Solideces</td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 minutos</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba Preliminar 3: Determinación de auxiliares a usar.

Siendo los agentes dispersantes y retardantes igualadores, se pensó en la posibilidad de usar estos productos auxiliares por temas de igualación en el teñido, y poder hacer la comparativa con y sin estos productos auxiliares.

Las pruebas se realizaron con 1% de dispersante y 10% de Sulfato de Sodio en la etapa de etapa de teñido a 98°C por 60 minutos.
Tabla 6. Variables y Parámetros de la Prueba 3

<table>
<thead>
<tr>
<th>Determinación de auxiliares a usar</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uso de Auxiliares</td>
<td>Igualación</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 minutos</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba Preliminar 4. Determinación del número de baños a trabajar.

El número de baños en un proceso de teñido y posterior mordentado, puede cambiar drásticamente el matiz del colorante debido a los cambios de pH entre un baño y otro.

Se conoce de otros teñidos con mordiente por referencia bibliográfica, como es el teñido al cromo, que el proceso cromatado posterior al teñido en baño nuevo, mejora las solideces en colores oscuros a intensos, es por esto que se hicieron pruebas bajo estos criterios a la vez comparándolo con 1 solo baño, para definir cuál presenta mejores solideces finales.

Al término se sacaron solideces al frote seco y húmedo, así como lavado.
Tabla 7. Variables y Parámetros de la Prueba 4

<table>
<thead>
<tr>
<th>Determinacion del Numero de Baños</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeros de Baños</td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 minutos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba Preliminar 5: Determinación del dador de ácido/álcali y la concentración de mordiente.

Para la determinación del dador de ácido/álcali, se utilizó los siguientes insumos:

- **Ácidos**
 - Ac. Acético: \(\text{CH}_3\text{COOH} \)
 - Ac. Cítrico: \(\text{C}_6\text{H}_8\text{O}_7 \)

- **Álcalis**
 - Amoniaco: \(\text{NH}_3 \)
 - Carbonato: \(\text{CO}_3 \)

Se estableció pH en un rango de 3.5 a 10.0, para ver el efecto de los extremos sobre la fibra proteica en estudio. Rangos a pH 3.5, pueden ser logrados con ácidos fuertes
como el ácido fórmico y ácido sulfúrico, sin embargo el efecto de estos en la igualación es alto, de la misma forma para pH mayores a 10.0, se sabe por referencia bibliográfica que destruyen la fibra proteica.

Es posible variar de matiz un teñido acidificando o alcalinizando un baño. El objeto de usar diferentes dadores de ácido y álcali, fue para ver el efecto del pH en el color, así como en el cubrimiento punta raíz del colorante e igualación.

Se empezó las pruebas de mordentado con valores de 2.5% a 5% para evaluar el efecto de este en el teñido de las cuales se sacaron solideces al frote seco y húmedo, con diferentes dadores ácidos y de álcali, para determinar los mejores valores de solidez para el presente estudio. También se sacaron solidez al lavado.
Tabla 8. Variables y Parámetros de la Prueba 5

<table>
<thead>
<tr>
<th>Determinacion del Dador Acido/Alcali y Concentracion de Mordiente</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidos</td>
<td>Calidad Hilado Matiz/Igualacion (pH) Solideces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcalis</td>
<td>Calidad Hilado Matiz/Igualacion (pH) Solideces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba Preliminar 6: Determinación de dador de ácido a utilizar.

Se trabajó con ácido acético comparado con ácido cítrico bajo las mismas condiciones, para establecer si existe diferencia en color, posteriormente se sacaron solideces al frote seco y húmedo:

- **Etapa de teñido**: 98°C por 60 minutos
 - pH 4.06 para colorante Globe Yellow 7%
- pH 4.72 para colorante Globebix EXL 3%
- pH 4.32 para colorante Carmín Liquido K3

- Etapa de mordentado: 98°C por 60 minutos
 - pH 4.55 para colorante Globe Yellow 7%
 - pH 4.85 para colorante Globebix EXL 3%
 - pH 4.62 para colorante Carmín Liquido K3

Tabla 9. Variables y Parámetros de la Prueba 6

<table>
<thead>
<tr>
<th>Determinacion del Dador Acido</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidos</td>
<td>Igualacion Solideces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba Preliminar 7: Determinación de los parámetros de teñido. Cinética de teñido.
El estudio de las curvas de adsorción y las velocidades de reacción para colorantes naturales es importante porque provee información acerca de la saturación al equilibrio llevada a cabo por el colorante en la fibra, además de predecir el agotamiento de los baños de tintura para una concentración dada. La información de saturación del colorante en el sustrato de alpaca suri es útil para determinar la cantidad de colorante necesaria para obtener una tintura eficiente.

Se estudió cada colorante sobre sustrato alpaca Suri a intervalos regulares de tiempo, se hace con el objeto de determinar la gradiente de teñido, tiempos de teñido, punto isoeléctrico, agotamiento y colorante remanente en el baño.

Fórmula de proceso de teñido

- 1% Albegal A
- 3% Ácido Acético
- 2% Colorante

Para lo cual se tomaron 6 muestras cada 10°C, a gradiente 1.3 C°/min de subida y 6 muestras cada 10 minutos en la etapa de mantenimiento a 98°C.

Fórmula de etapa de Mordentado

- 5% de Sulfato Alumínico potásico

Se realizó la misma secuencia de toma de muestras en la etapa de mordentado en el mismo baño.

Se repitió la metodología de trabajo de la determinación de la Cinética del proceso de teñido para el colorante Globe Yellow 7%, cambiándola esta de 2% a 1% de concentración, debido a que no se observaron buenos agotamientos.
A la vez se realizaron pruebas para comparar la intensidad de matiz a concentraciones de 1%, 2% y 3%.

Se sacaron solideces al frote seco y húmedo para las 3 concentraciones.

Tabla 10. Variables y Parámetros de la Prueba 7

<table>
<thead>
<tr>
<th>Determinación de la Cinética de Teñido</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo</td>
<td>Punto de Inflexión Gradiete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>Agotamiento Gradiete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba 8: Pruebas para mejorar las solideces al frote seco y húmedo.

Una planta tintórea necesita saber si un teñido va a poder resistir un tratamiento posterior más enérgico en la planta o diferente al que posiblemente sea sometido ya en forma de prenda y/o durante el uso de esta.
Es por esto que se evalúa la resistencia y elongación del hilado antes y después de ser sometido a los tratados, verificando así si se encuentran dentro de los valores establecidos en específico para la fibra alpaca Suri.

Una vez logrado el matiz buscado, el tintorero sabe que el teñido no ha alcanzado su fase final ya que otros tratamientos durante el aprestado van a ocasionar virajes en el matiz.

Sabiendo que la alteración del color es inevitable después de un tratamiento para la mejora de solidez, se realizaron 3 pruebas con los siguientes auxiliares, para cuantificar la variación de este.

- Detergente y dispersante se trabajaron al 1%, a 60°C por 20 minutos.
- Reductor, al 0.2% a 80°C por 20 minutos.

Al término se evaluó matiz para cada colorante y se sacaron solideces al frote seco y húmedo, así como lavado.

Tabla 11. Variables y Parámetros de la Prueba 8

<table>
<thead>
<tr>
<th>Pruebas para mejorar el Frote seco y humedo</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso Detergente</td>
<td>Matiz</td>
<td>Solidez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso Dispersante</td>
<td>Matiz</td>
<td>Solidez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso Reductor</td>
<td>Matiz</td>
<td>Solidez</td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba 9: Determinación de la solidez a la luz.

La decoloración de las tinturas cuando son expuestas a la acción de la luz solar ha sido objeto de numerosas investigaciones y muy poco se sabe a cerca del mecanismo de decoloración, es por esto que se realizan pruebas a los teñidos exponiéndolos a la acción de la luz solar.

En las pruebas realizadas se simulo las horas de exposición a la luz solar, según lo que establece la norma: 20 horas de exposición con luz azul L4 estándar, que es una lámpara de arco Xenón. Para poder hacer la comparativa de la decoloración del teñido, se expone una parte y la otra se enmascarillada.
Los pasos a seguir son los siguientes:

- Sobre un pedazo de cartón se sujeta la muestra de hilado teñido, cubriendo la mitad de la superficie para resguardarlo de la luz y dejando al descubierto la otra mitad para visualizar la diferencia.

- Se expuso a la luz solar en 2 intervalos de 10 horas cada uno.

La solidez a la luz, es una variable respuesta a los parámetros previamente establecidos.

Ver Anexo: Colorfastness to Light. AATCC Test Method 16-2003

Prueba 10: Determinación a la solidez al lavado.

El procedimiento de lavado que se sigue en casa o en una lavandería industrial depende principalmente del tejido y la fibra que se ha utilizado en la confección de la prenda. En el caso en estudio se utiliza un lavado suave por ser una fibra Premium delicada, mientras que para otro tipo de fibras como algodón, se utiliza un procedimiento más enérgico.

La solidez al lavado, es una variable respuesta a los parámetros previamente establecidos.

Ver anexo: Colorfastness to Laundering. AATCC Test Method 61-2003.

Prueba 11: Determinación del desmontado con diferentes productos auxiliares.

Toda casa de colorantes incluye en sus catálogos una sección al tema de desmontado de colorante, con el objetivo de poder hacer correcciones de color a los teñidos, es por esto que se probó hacer este procedimiento también en colorantes naturales.

Se eligieron las descargas más comunes en tintorería, que son:

- 2% de igualante + 20% de sulfato de sodio a 98°C por 30 minutos.
- 1% de reductor a 80°C por 20 minutos.

Los auxiliares para el desmontado de tintura, son ampliamente utilizados para la corrección de partidas defectuosas de tintorería. Los productos adecuados para efectuar esta corrección están en función de los colorantes y fibras involucradas.

Tabla 12. Variables y Parámetros de la Prueba 11

<table>
<thead>
<tr>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igualante</td>
<td>Fuerza Color</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfato de Sodio</td>
<td>Fuerza Color</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductor</td>
<td>Fuerza Color</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba 12: Ensayo Experimental con mayor concentración de mordiente.

Según el Lic. Raúl Lazarte Gamero, en su estudio a lo largo de su carrera en la industria textil la cantidad de mordiente a trabajar va entre los rangos de 3% a 10% y según el “Manual de Tintes de origen Natural para Lana”, sugieren el uso de porcentajes altos de mordiente alumbre que alcanzan hasta el 25%. Para el caso de estudio se decidió trabajar con lo que recomienda la bibliografía y a su vez probar con valores aún
mayores: 40%, 55% y 70%, para determinar cuál de las 2 teorías se aplica mejor a la fibra de sustrato de alpaca suri, ya que esta puede verse afectada por las cantidades altas de este mordiente.

Se realizan las pruebas de calidad del hilado, matiz y solideces.

Tabla 13. Variables y Parámetros de la Prueba 12

<table>
<thead>
<tr>
<th>Variables Independientes</th>
<th>Variables Dependientes Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje de Mordiente</td>
<td>Calidad Hilado Matiz Solidez</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
</tr>
<tr>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba 13: Comparativa con diferentes insumos para la obtención de mejor tacto en hilado.

Siendo este un proceso mordentado, el tacto del hilado puede verse afectado, lo que se puede corregir, sin embargo al tener cada insumo un pH distinto, también podría existir variación en el matiz.

Los insumos usados fueron:
- Cremor tártaro con pH: 3.60 en disolución 1:10.
- Miralan Q con pH: 7.03 en disolución 1:10.
- Ácido Graso con pH: 5.77 en disolución 1:10.

El uso de diferentes insumos puede alterar la solidez al frote seco y húmedo, por lo que una vez obtenido mejor tacto, se evaluó el efecto de estos insumos versus no usarlos en el hilado tinturado.

Se debe mencionar que en el caso exista una mejora en el tacto, no necesariamente existirá mejora en las solideces al frote, por lo que se deberá evaluar el propósito del uso del sustrato teñido.

Tabla 14. Variables y Parámetros de la Prueba 13

<table>
<thead>
<tr>
<th>Comparativa con diferentes insumos para la obtención de mejor tacto en hilado</th>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cremor Tartaro</td>
<td>Tacto</td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Miralan Q</td>
<td>Tacto</td>
<td>Porcentaje de ácido en la etapa de Teñido</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Acido Graso</td>
<td>Tacto</td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Prueba 14: Prueba de combinación de colorantes en tricromía.

La paleta de colores está determinada por el mordiente utilizado y la variación del pH en la etapa de mordentado.

Se desarrollaron tricromías con los colorantes naturales en estudio, para hacer la evaluación de solideces al frote seco, húmedo y lavado.

Tabla 15. Variables y Parámetros de la Prueba 14

<table>
<thead>
<tr>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Matiz</td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba 15: Determinación de reproducibilidad a nivel laboratorio.

La reproducibilidad del color es controlada, en la mayor parte de las tinturas, visualmente, sin embargo, los controles más rigurosos deben ser efectuados por colorimetría. En este caso deben ser evaluados por: intensidad, matiz y pureza.

De estos 3 valores el que causa mayor número de reclamos cuando se diferencia del patrón, es el matiz. Cuando el color está en el matiz correcto, pequeñas diferencias
en intensidad son usualmente aceptadas, pero quien realmente define el grado de tolerancia es el cliente. Es por esto que es necesario el estudio del grado de reproducibilidad prueba a prueba a nivel laboratorio para que al escalar a planta, la diferencia sea menor, garantizando eficiencia y productividad en el teñido.

Tabla 16. Variables y Parámetros de la Prueba 15

<table>
<thead>
<tr>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero de Pruebas</td>
<td>Matiz e Intensidad</td>
<td>Porcentaje de Colorante</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Porcentaje de acido en la etapa de Teñido</td>
<td>3%</td>
</tr>
<tr>
<td>Determinación de reproducibilidad a nivel laboratorio</td>
<td>Tipo de Mordiente</td>
<td>Alumbre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje de Mordiente</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiempo de Teñido</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiempo de Mordentado</td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numero de Baños</td>
<td>1 Baño</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Prueba 16: Determinación de fuerza color.

La fuerza color se mide visualmente y se apoya con el uso del espectrofotómetro que brinda datos cuantitativos de la intensidad del color. Esta prueba aplica para varios de los ensayos realizados en el estudio, por lo que en la presentación de resultados se detallara en cada prueba.

Los pasos a seguir son los siguientes:

1. Poner la muestra en la apertura.
2. En el programa DataTools, leer el estándar como el lote a comparar.

Es importante seleccionar la fuerza determinada adecuada, en el caso en estudio se utiliza la fuerza de punto de absorción máxima.

La determinación de fuerza color, es una variable respuesta a los parámetros previamente establecidos.

Prueba 17: Comparativa con colorantes sintéticos: complejo metálico y ácido VS colorantes naturales.

Para poder hacer una comparación de matiz al mismo nivel de lo utilizado actualmente en la industria textil, se ha reproducido los 3 matices de color que dan los colorantes naturales independientemente, con colorantes sintéticos de tipo ácidos y complejo metálico (en tricromías), comparando croma, matiz, iluminosidad e intensidad, haciendo una evaluación visual y cuantitativa con ayuda del software Datacolor.

Habiéndose reproducido los colores con tricromías de colorantes complejo metálico y ácidos, se harán también las solideces al frote y lavado comparativas.
<table>
<thead>
<tr>
<th>Variables Independientes</th>
<th>Variables Dependientes</th>
<th>Parámetros</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familia de Colorantes</td>
<td>Matiz e Intensidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de Colorante</td>
<td></td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de ácido en la etapa de Teñido</td>
<td></td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Tipo de Mordiente</td>
<td></td>
<td>Alumbre</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de Mordiente</td>
<td></td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Tiempo de Teñido</td>
<td></td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td>Tiempo de Mordentado</td>
<td></td>
<td>60 Minutos</td>
<td></td>
</tr>
<tr>
<td>Numero de Baños</td>
<td></td>
<td>1 Baño</td>
<td></td>
</tr>
</tbody>
</table>

Comparativa con colorantes sintéticos: complejo metálico y ácido VS colorantes naturales

Fuente: Elaboración Propia
CAPITULO IV. RESULTADOS Y DISCUSION

Resultados de las Pruebas Preliminares

Prueba Preliminar 1: Determinación de concentración de colorante.
Prueba Preliminar 2: Determinación de mordiente.
Prueba Preliminar 3: Determinación de auxiliares a usar.
Prueba Preliminar 4: Determinación del número de baños a trabajar.
Prueba Preliminar 5: Determinación del dador de ácido/álcali y la concentración de mordiente.
Prueba Preliminar 6: Determinación de dador de ácido a utilizar.
Prueba Preliminar 7: Determinación de los parámetros de teñido. Cinética de teñido.

Resultados de las Pruebas de la Investigación

Prueba 8: Pruebas para mejorar las solideces al frote seco y húmedo.
Prueba 9: Determinación de la solidez a la luz.
Prueba 10: Determinación a la solidez al lavado.
Prueba 11: Determinación del desmontado con diferentes productos auxiliares.
Prueba 12: Ensayo Experimental con mayor concentración de mordiente.
Prueba 13: Comparativa con diferentes insumos para la obtención de mejor tacto en hilado.
Prueba 14: Prueba de combinación de colorantes en tricromía.
Prueba 15: Determinación de reproducibilidad a nivel laboratorio.
Prueba 16: Determinación de fuerza color.
Prueba 17: Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales.
4.1. Resultados de la prueba Preliminar 1: Determinación de concentración de colorante

Tabla 18. Diferentes Concentraciones de colorante versus tiempo de agotamiento.

<table>
<thead>
<tr>
<th>Colorantes</th>
<th>Concentración %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td>2 4 6</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>2 4 6</td>
</tr>
<tr>
<td>Carmín líquido K3</td>
<td>2 4 6</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Gráfico 5. Concentración de colorante al 2% versus tiempo de agotamiento.

Fuente: Elaboración propia
Gráfico 6. Concentración de colorante al 4% versus tiempo de agotamiento

Fuente: Elaboración propia

Gráfico 7. Concentración de colorante al 6% versus tiempo de agotamiento.

Fuente: Elaboración propia
En los Gráfico 5, 6 y 7 se puede apreciar que una vez terminado el tiempo de agotamiento de 60 minutos para los tres colorantes en estudio, a mayor intensidad nos acercamos al punto de saturación de la fibra lo que se ve reflejado en los baños remanentes.

Para hacer una evaluación cuantitativa se debe trabajar de preferencia con intensidades intermedias, debido a que intensidades extremas desvirtuarían los resultados.

En base a lo antes expuesto se decide usar los colorantes naturales en concentración de 2%.

4.2. Resultados de la prueba Preliminar 2: Determinación de mordiente

Método de Medición del Matiz

Se hicieron muestras previas con diferentes mordientes obteniéndose los siguientes resultados:

- **Mordiente: Sulfato Alumínico Potásico**
 Dependiendo del colorante y del pH al que se trabajó, da desde matices brillantes y limpios hasta matices mates. No es tóxico.

- **Mordiente: Sulfato de Cobre**
 Da matices ligeramente verdosos, por lo que con este mordiente se pueden obtener verdes a partir de los amarillos. Se sabe por bibliográfica que es tóxico.

- **Mordiente: Sulfato de Hierro**
 Se aprecia que apaga los colores, por lo cual puede ser empleado para obtener colores mates y oscuros. Según bibliográfica indica que se puede utilizar sobre otros mordientes para oscurecer aún más los colores.

- **Cloruro de Estaño**
 Se observa que este produce los colores más brillantes, pero su uso es mucho más delicado, ya que en cantidades en exceso deja el material prácticamente inservible.
• Tartrato acido de potasio (Crémor tártaro)
 Este se utiliza siempre en combinación con otros mordientes, ya sea con cualquiera con los mencionados anteriormente. Tiene la propiedad de dar brillantez y uniformidad al color, e incluso fuentes bibliográficas indican que da mejor mano.

Tabla 19. Resultados de matiz para los colorantes Globe Yellow 7% y Catechu Itodye, con diferentes mordientes.

<table>
<thead>
<tr>
<th></th>
<th>Globe Yellow 7%</th>
<th>Catechu Itodye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenido (1er bano)</td>
<td> pH4.50</td>
<td> pH4.50</td>
</tr>
<tr>
<td>KAl(SO4)2</td>
<td> pH4.67</td>
<td> pH4.93</td>
</tr>
<tr>
<td>CuSO4</td>
<td> pH5.86</td>
<td> pH5.77</td>
</tr>
<tr>
<td>FeSO4</td>
<td> pH6.36</td>
<td> pH6.25</td>
</tr>
<tr>
<td>SnCl</td>
<td> pH3.56</td>
<td> pH3.46</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
En la tabla 19 vemos los distintos posibles matices obtenidos con los diferentes tipos de mordientes.

Método de Medición de Solideces

Respecto a las solideces, se tienen las siguientes tablas:

Tabla 20. Resultados de solideces al frote seco y húmedo con diferentes mordientes.

<table>
<thead>
<tr>
<th></th>
<th>Apreciación Visual</th>
<th>Cuantificación DataColor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Húmedo</td>
</tr>
<tr>
<td>Catechu Itodye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAl(SO$_4$)$_2$</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>CuSO$_4$</td>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td>FeSO$_4$</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>SnCl</td>
<td>4/5</td>
<td>4</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAl(SO$_4$)$_2$</td>
<td>3/4</td>
<td>2/3</td>
</tr>
<tr>
<td>CuSO$_4$</td>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td>FeSO$_4$</td>
<td>3/4</td>
<td>3</td>
</tr>
<tr>
<td>SnCl</td>
<td>4/5</td>
<td>4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th></th>
<th>Apreciación Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frote Seco</td>
</tr>
<tr>
<td>Catechu Itodye</td>
<td></td>
</tr>
<tr>
<td>KAl(SO₄)₂</td>
<td>![Image]</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>![Image]</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>![Image]</td>
</tr>
<tr>
<td>SnCl</td>
<td>![Image]</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
</tr>
<tr>
<td>KAl(SO₄)₂</td>
<td>![Image]</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>![Image]</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>![Image]</td>
</tr>
<tr>
<td>SnCl</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Se observa en las tablas 20 y 21 que las mejores solideces al frote seco y húmedo las dan los mordientes de Cloruro de estaño y sulfato de cobre. El sulfato de hierro y el sulfato Alumínico potásico dan las solideces más bajas.

Por motivos de toxicidad con el medio ambiente y personal que lo manipula, es que se descarta el uso del cloruro de estaño y sulfato de cobre.

Respecto al sulfato de hierro y sulfato Alumínico potásico, que son aptos ambientalmente, se descarta el uso de sulfato de hierro, por dos motivos, el primero es que comparando las solideces al frote seco y húmedo estas son notablemente más bajas, y segundo debido a que este deja trazas de hierro en las paredes de la tina, lo cual podría hacer poca productiva una planta, pues al término de cada teñido, se debe hacer un lavado reductor para la limpieza de esta, usando insumos extra y encareciendo el costo de receta, por lo que se decide trabajar con mordiente Sulfato Alumínico Potásico.

4.3. Resultados de la prueba Preliminar 3: Determinación de auxiliares a utilizar

En una receta convencional, para el teñido de colores medios a intensos con colorantes sintéticos, los auxiliares imprescindibles a utilizar son: igualante, acido/álcali, sal y dispersante.

En este caso, se hicieron pruebas de la misma forma, donde se notó visualmente que el uso de la sal y dispersante no es necesario, pues se obtuvieron buenas igualaciones sin precipitación de colorante, sin el uso de estos.

4.4. Resultados de la prueba Preliminar 4. Determinación del número de baños a trabajar
Método de Medición de la Calidad del Hilado

Se tomó calidad del hilado tanto en 1 baño como en 2 baños para poder confrontar los resultados y concluir cual es el beneficio de uno u otro, como se muestra en la tabla 22 a continuación:

Tabla 22. Resultados de calidad del hilado en 1 baño versus 2 baños.

<table>
<thead>
<tr>
<th></th>
<th>1 BANO</th>
<th>2 BANOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensayo 1</td>
<td>Ensayo 2</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsion S</td>
<td>154.00</td>
<td>153.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>720.00</td>
<td>680.00</td>
</tr>
<tr>
<td>RKM</td>
<td>5.76</td>
<td>5.44</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsion S</td>
<td>145.00</td>
<td>148.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>8.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>800.00</td>
<td>800.00</td>
</tr>
<tr>
<td>RKM</td>
<td>6.40</td>
<td>6.40</td>
</tr>
<tr>
<td>Carmin líquido K3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsion S</td>
<td>145.00</td>
<td>147.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>6.00</td>
<td>7.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>750.00</td>
<td>800.00</td>
</tr>
<tr>
<td>RKM</td>
<td>6.00</td>
<td>6.40</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Como se puede apreciar en la tabla 22 para la calidad de hilado, el impacto de realizar el proceso de teñido y mordentado en 1 baño o 2 baños, no influencia. Se tiene valores de RKM promedio dentro de rangos aceptados para el sustrato de Alpaca Suri.

Es importante mencionar que los valores de RKM en Alpaca Suri, son 1 punto más elevado que los de Alpaca Huacaya, esto debido a que la Alpaca Suri tiene fibra más larga, por lo que su resistencia kilométrica es mejor, haciendo a su vez este hilado fuerte y óptimo para procesos de acabado posteriores al teñido.

A continuación se muestran los resultados promedio de Alpaca Huacaya y Alpaca Suri:
Tabla 23. Estándares de calidad del hilado para Alpaca Huacaya y Suri.

<table>
<thead>
<tr>
<th></th>
<th>Alpaca Huacaya</th>
<th>Alcapa Suri</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKM</td>
<td>Mayor a 5</td>
<td>6 -6.5</td>
</tr>
<tr>
<td>Resistencia</td>
<td>730</td>
<td>734</td>
</tr>
</tbody>
</table>

Fuente: Estándares Michell & CIA

Método de Medición del Matiz

Cuando se trabaja en 2 baños se tiene una variable más a controlar que es el pH, pues si el pH varía, el matiz también lo hará. Lo que no sucede en 1 baño, pues solo se debe setear el pH inicial de tejido y continuar en el mismo en la etapa de mordentado.

El colorante Globe Yellow 7% es considerablemente más intenso en un baño, debido a su mejor agotamiento.

El colorante Globexbix EXL 3% tiene variación muy ligera, en 2 baños (pH 3.66) algo más rojizo que en 1 baño pH 4.08.

El colorante Carmín líquido 3K, la variación de pH fue mínima sin embargo hubo variación de color, en 2 baños (pH 3.74) tiene un matiz más azulado y en 1 baño (pH 3.80) el matiz es más rojizo y amarillento.

Método de Medición de Solideces

El número de baños va a ser crucial para la determinación de mejores solideces finales al frote seco y húmedo, pues en 1 baño el colorante remanente termina su agotamiento en la segunda etapa de mordentado, como se muestra en la tabla 24:

96
Tabla 24. Resultados de solideces al frote seco y húmedo en 1 Baño versus 2 Baños.

<table>
<thead>
<tr>
<th></th>
<th>1 BAÑO</th>
<th></th>
<th>2 BAÑOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciación Visual</td>
<td>Cuantificación DataColor</td>
<td>Apreciación Visual</td>
<td>Cuantificación DataColor</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Húmedo</td>
<td>Frote Seco</td>
<td>Frote Húmedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>4/5</td>
<td>3/4</td>
<td>4/5</td>
<td>2/3</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>3</td>
<td>2/3</td>
<td>2/3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Tabla 25. Resultados visuales de solideces al frote seco y húmedo en 1 Baño versus 2 Baños.

<table>
<thead>
<tr>
<th></th>
<th>1 BAÑO</th>
<th></th>
<th>2 BAÑOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciación Visual</td>
<td></td>
<td>Apreciación Visual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Húmedo</td>
<td>Frote Seco</td>
<td>Frote Húmedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>![Image](Globe Yellow 7%)</td>
<td>![Image](Globe Yellow 7% Húmedo)</td>
<td>![Image](Globe Yellow 7% Seco)</td>
<td>![Image](Globe Yellow 7% Húmedo)</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>![Image](Globebix EXL 3%)</td>
<td>![Image](Globebix EXL 3% Húmedo)</td>
<td>![Image](Globebix EXL 3% Seco)</td>
<td>![Image](Globebix EXL 3% Húmedo)</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>![Image](Carmin liquido K3)</td>
<td>![Image](Carmin liquido K3 Húmedo)</td>
<td>![Image](Carmin liquido K3 Seco)</td>
<td>![Image](Carmin liquido K3 Húmedo)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

En las tablas 24 y 25 se observa que la mejora en solidez es claramente en 1 baño, va de ½ a 2 puntos. Los resultados dados en la primera columna es la apreciación visual, la que se confirma con las lecturas de DataColor.
4.5. Resultados de la prueba Preliminar 5: Determinación del dador de ácido/álcali y la concentración de mordiente

Desde un punto de vista químico, la fibra proteica alpaca suri, que como ya se explicó es de origen animal, son proteínas resistentes a la mayoría de ácidos orgánicos. También resisten, en algunas condiciones determinadas, la acción de ciertos ácidos minerales. Por el contrario, los álcalis poco agresivos puede dañar las fibras proteicas y los álcalis fuertes pueden disolverlas por completo.

Método de Medición de Calidad del Hilado

En las tablas 26, 27 y 28 presentadas a continuación, se puede ver que esto se corrobora experimentalmente con valores de RKM mayores en los ácidos, siendo el mejor para el ácido acético, seguido del ácido cítrico. La diferencia de RKM es considerable, debido a que si bien los álcalis dan valores dentro del promedio para Alpaca en general, son inferiores respecto al promedio para nuestro sustrato en estudio: Alpaca Suri.
Tabla 26. Resultados de Calidad del Hilado con diferente dador de ácido/álcali y concentración de mordiente: Globe Yellow 7%

<table>
<thead>
<tr>
<th>% CONCENTRACION DE SULFATO ALUMINICO POTASICO</th>
<th>2.5%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIDO ACETICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsion S</td>
<td>155</td>
<td>139</td>
<td>141</td>
<td>145.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>10</td>
<td>15</td>
<td>11</td>
<td>12.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>700</td>
<td>720</td>
<td>780</td>
<td>733.33</td>
</tr>
<tr>
<td>RKM</td>
<td>5.6</td>
<td>5.76</td>
<td>6.24</td>
<td>5.87</td>
</tr>
<tr>
<td>Ensayo 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensayo 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensayo 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACIDO CITRICO				
Torsion S	140	145	142	142.33
% de elongacion	5	9	9	7.67
Resistencia	670	740	800	736.67
RKM	5.36	5.92	6.4	5.89
Ensayo 1				
Ensayo 2				
Ensayo 3				
PROM				

CARBONATO DE SODIO				
Torsion S	142	158	150	150.00
% de elongacion	6	6	8	6.67
Resistencia	660	600	730	663.33
RKM	5.28	4.80	5.84	5.31
Ensayo 1				
Ensayo 2				
Ensayo 3				
PROM				

AMONIACO				
Torsion S	163	143	146	150.67
% de elongacion	7	7	8	7.33
Resistencia	740	720	680	713.33
RKM	5.92	5.76	5.44	5.71
Ensayo 1				
Ensayo 2				
Ensayo 3				
PROM				

Fuente: Elaboración propia.
Tabla 27. Resultados de Calidad del Hilado con diferente dador de ácido/álcali y concentración de mordiente: Globebix EXL 3%

<table>
<thead>
<tr>
<th>% CONCENTRACION DE SULFATO ALUMINICO POTASICO</th>
<th>2.5%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIDO ACETICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensayo 1</td>
<td>Ensayo 2</td>
<td>Ensayo 3</td>
<td>PROM</td>
<td>Ensayo 1</td>
</tr>
<tr>
<td>Torsion S</td>
<td>135</td>
<td>144</td>
<td>148</td>
<td>142.33</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>12.5</td>
<td>13.5</td>
<td>12</td>
<td>12.67</td>
</tr>
<tr>
<td>Resistencia</td>
<td>720</td>
<td>720</td>
<td>640</td>
<td>693.33</td>
</tr>
<tr>
<td>RKM</td>
<td>5.76</td>
<td>5.76</td>
<td>5.12</td>
<td>5.55</td>
</tr>
<tr>
<td>ACIDO CITRICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensayo 1</td>
<td>Ensayo 2</td>
<td>Ensayo 3</td>
<td>PROM</td>
<td>Ensayo 1</td>
</tr>
<tr>
<td>Torsion S</td>
<td>143</td>
<td>148</td>
<td>137</td>
<td>142.67</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>15.5</td>
<td>14</td>
<td>12.5</td>
<td>14.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>780</td>
<td>740</td>
<td>700</td>
<td>740.00</td>
</tr>
<tr>
<td>RKM</td>
<td>6.24</td>
<td>5.92</td>
<td>5.60</td>
<td>5.92</td>
</tr>
<tr>
<td>CARBONATO DE SODIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensayo 1</td>
<td>Ensayo 2</td>
<td>Ensayo 3</td>
<td>PROM</td>
<td>Ensayo 1</td>
</tr>
<tr>
<td>Torsion S</td>
<td>151</td>
<td>154</td>
<td>144</td>
<td>149.67</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.50</td>
</tr>
<tr>
<td>Resistencia</td>
<td>660</td>
<td>700</td>
<td>760</td>
<td>706.67</td>
</tr>
<tr>
<td>RKM</td>
<td>5.28</td>
<td>5.60</td>
<td>6.08</td>
<td>5.65</td>
</tr>
<tr>
<td>AMONIACO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensayo 1</td>
<td>Ensayo 2</td>
<td>Ensayo 3</td>
<td>PROM</td>
<td>Ensayo 1</td>
</tr>
<tr>
<td>Torsion S</td>
<td>94</td>
<td>103</td>
<td>94</td>
<td>97.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>6.5</td>
<td>5</td>
<td>7.5</td>
<td>6.33</td>
</tr>
<tr>
<td>Resistencia</td>
<td>640</td>
<td>640</td>
<td>640</td>
<td>640.00</td>
</tr>
<tr>
<td>RKM</td>
<td>5.12</td>
<td>5.12</td>
<td>5.12</td>
<td>5.12</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 28. Resultados de Calidad del Hilado con diferente dador de ácido/álcali y concentración de mordiente: Carmín Liquido K3

<table>
<thead>
<tr>
<th></th>
<th>ACIDO ACETICO</th>
<th>ACIDO CITRICO</th>
<th>CARBONATO DE SODIO</th>
<th>AMONIACO</th>
</tr>
</thead>
<tbody>
<tr>
<td>% CONCENTRACION DE SULFATO ALUMINICO POTASICO</td>
<td>2.5%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Torsion S</td>
<td>138 134 146 139.33 148 149 143 146.67 147 142 148 145.67 140 147 140 142.33</td>
<td>140 153 142 145.00 99 102 99 100.00 144 154 141 146.33 146 156 155 152.33</td>
<td>145 147 151 147.67 138 139 140 139.00 97 103 102 100.67 99 105 100 101.33</td>
<td>102 98 97 99.00 139 140 137 138.67 152 148 139 146.33 145 144 146 145.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>12 12 10 11.33 13 14 16 14.33 12 18 12 14.00 8 8.5 12 9.50</td>
<td>9 10 12 10.33 6 7 8 7.00 11 8 8 9.00 9 11 10 10.00</td>
<td>15 16 14 15.00 12 9 12 11.00 5 5 7 5.67 16 13 13 14.00</td>
<td>6 5 6 5.67 15 13 10 12.67 9 9 7 10.67 5 9 7 7.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>780 740 700 740.00 780 780 820 793.33 800 820 760 793.33 740 780 780 766.67</td>
<td>790 800 800 796.67 400 560 500 486.67 820 800 780 800.00 860 900 900 886.67</td>
<td>760 760 720 746.67 640 600 720 653.33 500 520 580 533.33 760 800 800 786.67</td>
<td>480 500 500 493.33 700 700 720 706.67 650 700 670 673.33 760 770 740 756.67</td>
</tr>
<tr>
<td>RKM</td>
<td>6.24 5.92 5.60 5.92 6.24 6.24 6.56 6.35 6.40 6.56 6.08 6.35 5.92 6.24 6.24 6.13</td>
<td>6.32 6.4 6.4 6.37 3.2 4.48 4 3.89 6.56 6.4 6.24 6.40 6.88 7.2 7.2 7.09</td>
<td>6.08 6.08 5.76 5.97 5.12 4.80 5.76 5.23 4.00 4.16 4.64 4.27 6.08 6.40 6.40 6.29</td>
<td>3.84 4.0 4.0 3.95 5.60 5.60 5.76 5.65 5.20 5.60 5.36 5.39 6.08 6.16 5.92 6.05</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 29. Resumen de promedios de RKM de las Tablas 13, 14 y 15.

<table>
<thead>
<tr>
<th>% CONCENTRACIÓN DE SULFATO</th>
<th>ALUMINICO POTASICO</th>
<th>2.5%</th>
<th>3%</th>
<th>4%</th>
<th>5%</th>
<th>PROM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>ACIDO ACETICO</td>
<td>6.48</td>
<td>6.48</td>
<td>6.13</td>
<td>5.81</td>
<td>6.23</td>
</tr>
<tr>
<td></td>
<td>ACIDO CITRICO</td>
<td>5.89</td>
<td>6.64</td>
<td>4.77</td>
<td>6.11</td>
<td>5.85</td>
</tr>
<tr>
<td></td>
<td>CARBONATO DE SODIO</td>
<td>5.31</td>
<td>4.72</td>
<td>5.32</td>
<td>7.41</td>
<td>5.69</td>
</tr>
<tr>
<td></td>
<td>AMONIACO</td>
<td>5.71</td>
<td>4.27</td>
<td>6.03</td>
<td>6.29</td>
<td>5.57</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>ACIDO ACETICO</td>
<td>5.85</td>
<td>6.48</td>
<td>6.13</td>
<td>5.81</td>
<td>6.23</td>
</tr>
<tr>
<td></td>
<td>ACIDO CITRICO</td>
<td>5.92</td>
<td>5.55</td>
<td>5.49</td>
<td>6.29</td>
<td>5.81</td>
</tr>
<tr>
<td></td>
<td>CARBONATO DE SODIO</td>
<td>5.65</td>
<td>6.08</td>
<td>5.76</td>
<td>5.17</td>
<td>5.67</td>
</tr>
<tr>
<td></td>
<td>AMONIACO</td>
<td>5.12</td>
<td>5.81</td>
<td>5.71</td>
<td>6.53</td>
<td>5.77</td>
</tr>
<tr>
<td>Carmín líquido K3</td>
<td>ACIDO ACETICO</td>
<td>5.92</td>
<td>6.35</td>
<td>6.35</td>
<td>6.13</td>
<td>6.19</td>
</tr>
<tr>
<td></td>
<td>ACIDO CITRICO</td>
<td>6.37</td>
<td>3.89</td>
<td>6.40</td>
<td>7.09</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>CARBONATO DE SODIO</td>
<td>5.97</td>
<td>5.23</td>
<td>4.27</td>
<td>6.29</td>
<td>5.44</td>
</tr>
<tr>
<td></td>
<td>AMONIACO</td>
<td>3.95</td>
<td>5.65</td>
<td>5.39</td>
<td>6.05</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>PROM RKM</td>
<td>5.60</td>
<td>5.46</td>
<td>5.70</td>
<td>6.30</td>
<td>5.77</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Teniendo como premisa que una cantidad excesiva de mordiente puede alterar la calidad del hilado, se ha experimentado con porcentajes de mordiente desde 2.5% a 5%. Los mejores resultados de resistencia kilométrica dentro de los estándares para sustrato de Alpaca Suri son a porcentajes de 4% y 5% de mordiente.

Como muestra la tabla 29 los mejores resultados de resistencia kilométrica son los trabajados con ácido acético, sin embargo los resultados con los otros dadores de ácido/álcali no están fuera del estándar para la fibra Alpaca.

Método de Medición del Matiz
Tabla 30. Resumen de valores de pH, para los diferentes dadores de ácido/álcali y concentración de mordiente alumbre.

<table>
<thead>
<tr>
<th></th>
<th>% CONCENTRACIÓN DE SULFATO ALUMINICO POTASICO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5%</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
</tr>
<tr>
<td>ACIDO ACETICO</td>
<td>4.79</td>
</tr>
<tr>
<td>ACIDO CITRICO</td>
<td>4.00</td>
</tr>
<tr>
<td>CARBONATO DE SODIO</td>
<td>9.60</td>
</tr>
<tr>
<td>AMONIACO</td>
<td>10.00</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
</tr>
<tr>
<td>ACIDO ACETICO</td>
<td>4.74</td>
</tr>
<tr>
<td>ACIDO CITRICO</td>
<td>3.65</td>
</tr>
<tr>
<td>CARBONATO DE SODIO</td>
<td>9.67</td>
</tr>
<tr>
<td>AMONIACO</td>
<td>9.78</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
</tr>
<tr>
<td>ACIDO ACETICO</td>
<td>4.67</td>
</tr>
<tr>
<td>ACIDO CITRICO</td>
<td>3.65</td>
</tr>
<tr>
<td>CARBONATO DE SODIO</td>
<td>9.34</td>
</tr>
<tr>
<td>AMONIACO</td>
<td>9.68</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Según los resultados de la tabla 30 se tiene que:

Respecto al matiz del colorante Globe Yellow 7%:

- Comparando con los distintos valores de pH:
 - Ácidos: los matices son brillantes y limpios
 - Básicos: los matices son apagados

- Comparando con las distintas concentraciones de alumbre:
 - Ácido Acético: el matiz se va haciendo rojizo a mayor concentración de mordiente, Siendo la diferencia de matiz del 2.5% al 5% drástico.
 - Ácido Cítrico: la diferencia notable de matiz se da en los extremos 2.5% y 5% del mordiente. A mayor cantidad de alumbre el color se hace más brillante y luminoso.
o Carbonato de Sodio: el matiz se mantiene brillante en la concentración 2.5% y 5%, en este último es más intenso. Las muestras de concentración 3% y 4% son menos intensas y más verdosas. En todas las concentraciones los matices son opacos.

o Amoniaco: no se observa mayor diferencia de matiz en las diferentes concentraciones. Los matices se mantienen opacos.

Respecto al matiz del colorante Globebix EXL 3%

- Comparando con los distintos valores de pH:
 o Ácidos: los matices son anaranjados. Es importante notar que todas las muestras trabajadas con el ácido cítrico salieron con el defecto veteadas
 o Básicos: los matices son amarillentos.

- Comparando con las distintas concentraciones de alumbre:
 o Ácido Acético: no hay mayor variación de matiz para las concentraciones de 3% – 5%, en el 2.5% es ligera más roja.
 o Ácido Cítrico: no hay mayor variación de matiz para las concentraciones de 2.5% – 4%, en el 5% es ligera más roja.
 o Carbonato de Sodio: el matiz en las concentraciones más altas 4% y 5% son más intensas y rojizas. Para las concentraciones 2% y 3% son opacas y amarillentas.
 o Amoniaco: a mayor concentración de mordiente el matiz se va haciendo más intenso y rojizo.

Respecto al matiz del colorante Carmín Liquido K3.

- Comparando con los distintos valores de pH:
 o Ácidos: ácido acético matiz azul, ácido cítrico matiz rosado – amarillento. Presentan colores apagados.
 o Básicos: matices intermedios entre los ácidos.
- Comparando con las distintas concentraciones de alumbre:
 - Ácido Acético: el matiz en 2.5% es azulado manteniéndose este color hasta la concentración de 4%, el cambio es brusco en el 5% siendo este matiz aún más azul.
 - Ácido Cítrico: del 2.5% al 5%, es la mayor variación. Matiz al 2.5% rosado – amarillento, matiz al 5% más opaco y azulado.
 - Carbonato de Sodio: en todas las concentraciones el matiz se mantiene.
 - Amoniaco: en todas las concentraciones el matiz se mantiene.

Método de Medición de Solideces

Tabla 31. Comparativa de solideces al frote seco y húmedo con los diferentes ácidos/álcalis en la concentración de mordiente 2.5% y 5%

<table>
<thead>
<tr>
<th>2.5% Mordiente</th>
<th>5% Mordiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apreciación Visual</td>
<td>Cuantificación</td>
</tr>
<tr>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Ac. Acético</td>
<td>3/4</td>
</tr>
<tr>
<td>Carbonato</td>
<td>5/4</td>
</tr>
<tr>
<td>Amoniaco</td>
<td>4</td>
</tr>
<tr>
<td>Ac. Acético</td>
<td>4</td>
</tr>
<tr>
<td>Ac. Cítrico</td>
<td>4</td>
</tr>
<tr>
<td>Carbonato</td>
<td>4</td>
</tr>
<tr>
<td>Amoniaco</td>
<td>4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 32. Comparativa Visual de solideces al frote seco y húmedo con los diferentes ácidos/álcalis en la concentración de mordiente 2.5% y 5%

<table>
<thead>
<tr>
<th></th>
<th>2.5% Mordiente</th>
<th>5% Mordiente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Ac. Acetico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac. Citrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoniaco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globebir EXL 3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
En las tablas 30 y 31, podemos observar que las solideces:

En el colorante Globe Yellow 7%, las mejores solideces para ambas concentraciones de mordiente, son las del Ácido Cítrico, con valores de 4/5 para el frote seco, y 4 para el frote húmedo.

Para el colorante Globebix EXL 3% en concentración de 2.5% de mordiente, las mejores solideces son para el ácido acético y el amoniaco, los valores de solidez al frote seco es 4 y para el frote húmedo es 1 para el ácido acético y 4 frote seco y ½ frote húmedo para el Amoniaco. A 5% de concentración de mordiente la mejor solidez es para el carbonato de sodio con valores de 4 y 3/4, para frote seco y húmedo respectivamente.

Para el colorante Carmín líquido K3, en concentración de 2.5% de mordiente, las mejores solideces son para el ácido cítrico, carbonato de sodio y amoniaco, con valores de 4 para el frote seco y 3 para el frote húmedo. A 5% de concentración, las mejores solideces son para el ácido cítrico y el carbonato de sodio, con valores de 4 para el frote seco y 3/4 para el frote húmedo.

4.6. Resultados de la prueba Preliminar 6: Determinación de dador de ácido a utilizar

Método de Medición de la Calidad del Hilado

Con los resultados anteriores respecto a los ácidos versus los álcalis, se notó que la calidad del hilado se ve conservada, siempre que se trabaje con ácidos orgánicos, por lo que esta prueba se hizo el estudio solo de la comparativa del ácido acético y del ácido cítrico a nivel de matiz y solideces al frote.
Método de Medición del Matiz

Respecto al matiz y cubrimiento punta-raíz, a pH iguales de teñido con ácido acético y ácido cítrico los matices son diferentes, lo que indica que la reacción del sustrato en estudio con los diferentes ácidos es distinta.

Respecto al colorante Globe Yellow 7% la diferencia de matiz entre un ácido y otro es mínimo, sin embargo el brillo que le da el ácido acético al teñido es excepcional.

En el colorante Globebix EXL 3% con el ácido acético el matiz es más rojizo.

El matiz del colorante Carmín líquido K3 es el que presenta mayor diferencia, siendo con el ácido acético el color más limpio, más rojo e intenso, con brillo.

Todas las muestras con ácido cítrico presentaban el defecto de veteado, lo cual hace que se descarte por completo el uso de este acidulante.

Método de Medición de Solideces

Respecto a las solideces al frote se obtienen los siguientes resultados:

Tabla 33. Comparativa de solideces al frote seco y húmedo de Ácido Acético versus Ácido Cítrico.

<table>
<thead>
<tr>
<th></th>
<th>Acido Acetico</th>
<th></th>
<th>Acido Cítrico</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciacion Visual</td>
<td>Cuantificacion</td>
<td>Apreciacion Visual</td>
<td>Cuantificacion</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>2</td>
<td>1/2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>4</td>
<td>2</td>
<td>4/5</td>
<td>1/2</td>
</tr>
<tr>
<td>Carmín líquido K3</td>
<td>3/4</td>
<td>2</td>
<td>2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 34. Comparativa Visual de solideces al frote seco y húmedo de Ácido Acético versus Ácido Cítrico.

<table>
<thead>
<tr>
<th></th>
<th>AC ACETICO</th>
<th>AC CITRICO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciacion Visual</td>
<td>Apreciacion Visual</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En las tablas 32 y 33: en el colorante Globe Yellow 7% tenemos que las solideces en ambos frote seco y húmedo son ½ punto mejores para el ácido cítrico. Para el colorante Globebix EXL 3% y el colorante Carmín líquido 3K existe diferencia de 1 punto mejor en el frote húmedo a favor del ácido cítrico, mientras que en el frote seco en el colorante Globebix EXL 3% no hay diferencia perceptible y en el colorante Carmín líquido 3 la diferencia es de 1 punto.
4.7. **Resultados de la prueba Preliminar 7: Determinación de los parámetros de teñido. Cinética de teñido**

Para el estudio del comportamiento cinético del sustrato alpaca suri teñido con colorantes naturales de estructura Curcuminoide, Xantófila, y Antroquinónica, se decidió seguir un proceso de tintura a 98°C por 60 minutos, con posterior proceso de mordentado a 98°C por 60 minutos en el mismo baño. La elección del proceso se debe a que en estudios previos con colorantes sintéticos se ha probado la fijación del colorante a esta temperatura y tiempo, lo cual hace posible alcanzar un proceso estándar con grados de agotamiento aceptables. Los teñidos se efectuaron a concentración del 2% de cada colorante, se utilizó agente igualador y como acidulante el ácido acético; para la etapa de mordentado se utilizó el 5% de sulfato Alumínico potásico.

Método de Medición del Matiz

Para el estudio de la fase de fijación en la isoterma de la curva se tomaron muestras a espacios de tiempo de 10 minutos donde se determinó que el tiempo de teñido ideal es de 60 minutos al igual que para el de mordentado. La absorción de colorante a diferente tiempo de teñido se determinó mediante el espectrofotómetro DataColor 600.
Gráfico 8. Curva de Cinética de teñido de colorante Globe Yellow 7% al 2%. Curva de subida versus curva de agotamiento de colorante.

Fuente: Elaboración Propia

En el gráfico 8: Para el Globe Yellow 7%, en concentración de colorante al 2%, la curva de subida muestra el punto de inflexión a los 80°C, donde el cambio de colorante

28 Punto de inflexión: Punto donde los valores de X de una función continua pasa de un tipo de concavidad a otro.
es más drástico en este punto. La cuerva de agotamiento muestra ligero cambio a los 98° C.

Gráfico 9. Curva de Cinética de teñido de colorante Globebix EXL al 2%. Curva de subida versus curva de agotamiento de colorante.

Fuente: Elaboración Propia

En el gráfico 9: Para el Globebix EXL, en concentración de colorante al 2%, la curva de subida muestra el punto de inflexión a los 90°C, donde el cambio de colorante es más drástico en este punto. La curva de agotamiento muestra el cambio a los 98° C por 10 minutos.
Gráfico 10. Curva de Cinética de teñido de colorante Carmín Liquido K3 al 2%. Curva de subida versus curva de agotamiento de colorante.

Fuente: Elaboración Propia

En el gráfico 10: Para el Carmín Liquido K3, en concentración de colorante al 2%, la curva de subida muestra el punto de inflexión a los 98°C por 10 minutos, donde el cambio de colorante es más drástico en este punto. La curva de agotamiento muestra el cambio a los 98°C.
Del estudio del comportamiento cinético del colorante Globe Yellow 7%, se efectuó además una cinética al 1% de concentración de colorante, debido al poco agotamiento mostrado en los resultados anteriores para este colorante:

Gráfico 11. Curva de Cinética de teñido de colorante Globe Yellow 7% al 1%. Curva de subida versus curva de agotamiento de colorante.

Fuente: Elaboración Propia
En el gráfico 11: el Globe Yellow 7%, en concentración de colorante al 1%, la curva de subida muestra un ligero cambio a los 98°C por 30 minutos, como se puede observar este colorante presenta una curva bastante pareja tanto de subida como de agotamiento, esta segunda muestra el punto de inflexión a los 98°C, donde la diferencia es mayor.

En el Anexo 6, página 203 se muestran las Lecturas de fuerza color obtenidas con el software de Datacolor para las curvas de subida y agotamiento para cada colorante.

De las pruebas realizadas para comparar las diferentes intensidades al 1%, 2% y 3% del colorante Globe Yellow 7% se muestra en la gráfica 12, que la concentración de colorante al 2% es un 57.7% más oscura, saturada y roja.
Gráfico 12. Concentración de Globe Yellow 7% a concentración 1% versus 2%.

Como se muestra en la gráfica 13, la concentración de colorante al 2% es un 35.41% más oscura, saturada y roja.

Fuente: Lecturas DataColor.
Gráfico 13. Concentración de Globe Yellow 7% a concentración 2% versus 3%.

La fuerza color aumenta ligeramente con la intensidad de colorante, lo que indica que en realidad este colorante no va a agotar, bajando la concentración lo que se logra es bajar la intensidad de color, mas no mejores agotamientos.

Desde el punto de vista medio ambiental, tener baños residuales con colorantes naturales no implica daño al medio ambiente, al ser derivados directamente de una planta.

Fuente: Lecturas DataColor.

La fuerza color aumenta ligeramente con la intensidad de colorante, lo que indica que en realidad este colorante no va a agotar, bajando la concentración lo que se logra es bajar la intensidad de color, mas no mejores agotamientos.

Desde el punto de vista medio ambiental, tener baños residuales con colorantes naturales no implica daño al medio ambiente, al ser derivados directamente de una planta.

Método de Medición de Solideces
Tabla 35. Solideces al frote seco y húmedo de colorante Globe Yellow 7% para 1%, 2% y 3%.

<table>
<thead>
<tr>
<th></th>
<th>Frote Seco</th>
<th>Frote Húmedo</th>
<th>Frote Seco</th>
<th>Frote Húmedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td>1%</td>
<td>4</td>
<td>3/4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td>3/4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>3/4</td>
<td>1/2</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Tabla 36. Solideces Visuales al frote seco y húmedo de colorante Globe Yellow 7% para 1%, 2% y 3%.

<table>
<thead>
<tr>
<th></th>
<th>Frote Seco</th>
<th>Frote Húmedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
En las pruebas de la cinética del teñido del punto anterior, se observó que este colorante no llega a agotar a ningún pH (ni ácido ni álcali), siempre queda un remanente considerable en el baño.

Las pruebas de solidez de las tablas 34 y 35 muestran que los frotes secos y húmedos van aumentado directamente proporcional a la concentración de colorante usado para el teñido.

Resultados de las Pruebas de la Investigación

4.8. Resultados de la prueba 8: Pruebas para mejorar las solideces al frote seco/húmedo y Lavado.

Método de Medición de la Calidad del Hilado

Respecto a la calidad del hilado, se observa que con el detergente y el dispersante el valor de RKM disminuye en promedio 0.5, a diferencia del reductor este disminuye en promedio 1 punto. Esto se debe a que el reductor actúa directamente sobre la fibra desgastando la cutícula lo que provoca un debilitamiento mayor del hilado a los valores obtenidos con detergente o dispersante que solo sacan el colorante remanente externo sin atacar directamente la fibra.

A continuación se muestran los valores obtenidos de RKM:
Tabla 37. Resultados de Calidad del Hilado con el agente reductor para mejorar solideces al frote seco y húmedo.

<table>
<thead>
<tr>
<th>Globe Yellow 7%</th>
<th>Torsión S (N/m)</th>
<th>% de elongación</th>
<th>Resistencia (N)</th>
<th>RKM (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo 1</td>
<td>139.00</td>
<td>13</td>
<td>900</td>
<td>7.20</td>
</tr>
<tr>
<td>Ensayo 2</td>
<td>137</td>
<td>10</td>
<td>800</td>
<td>6.40</td>
</tr>
<tr>
<td>Ensayo 3</td>
<td>141</td>
<td>9</td>
<td>860</td>
<td>6.88</td>
</tr>
<tr>
<td>PROM</td>
<td>139.00</td>
<td>10.67</td>
<td>853.33</td>
<td>6.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Globebix EXL 3%</th>
<th>Torsión S (N/m)</th>
<th>% de elongación</th>
<th>Resistencia (N)</th>
<th>RKM (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo 1</td>
<td>149.00</td>
<td>7.50</td>
<td>820.00</td>
<td>6.56</td>
</tr>
<tr>
<td>Ensayo 2</td>
<td>143.00</td>
<td>14.00</td>
<td>860.00</td>
<td>6.88</td>
</tr>
<tr>
<td>Ensayo 3</td>
<td>143.00</td>
<td>8.00</td>
<td>820.00</td>
<td>6.56</td>
</tr>
<tr>
<td>PROM</td>
<td>145.00</td>
<td>9.83</td>
<td>833.33</td>
<td>6.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carmin líquido K3</th>
<th>Torsión S (N/m)</th>
<th>% de elongación</th>
<th>Resistencia (N)</th>
<th>RKM (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo 1</td>
<td>144.00</td>
<td>11.00</td>
<td>820.00</td>
<td>6.56</td>
</tr>
<tr>
<td>Ensayo 2</td>
<td>141.00</td>
<td>9.00</td>
<td>780.00</td>
<td>6.24</td>
</tr>
<tr>
<td>Ensayo 3</td>
<td>148.00</td>
<td>14.00</td>
<td>880.00</td>
<td>7.04</td>
</tr>
<tr>
<td>PROM</td>
<td>144.33</td>
<td>11.33</td>
<td>826.67</td>
<td>6.61</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 37. Resultados de Calidad del Hilado con detergente y dispersante para mejorar solideces al frote seco y húmedo.

<table>
<thead>
<tr>
<th></th>
<th>ANTES</th>
<th>DETERGENTE</th>
<th>DISPERSANTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensayo 1</td>
<td>Ensayo 2</td>
<td>Ensayo 3</td>
</tr>
<tr>
<td>Torsion S</td>
<td>154.00</td>
<td>152.00</td>
<td>152.67</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>8.75</td>
<td>7.50</td>
<td>6.60</td>
</tr>
<tr>
<td>Resistencia</td>
<td>720.00</td>
<td>700.00</td>
<td>650.00</td>
</tr>
<tr>
<td>RKM</td>
<td>5.76</td>
<td>5.60</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>145.00</td>
<td>142.00</td>
<td>140.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>10.00</td>
<td>10.00</td>
<td>8.20</td>
</tr>
<tr>
<td>Resistencia</td>
<td>780.00</td>
<td>740.00</td>
<td>750.00</td>
</tr>
<tr>
<td>RKM</td>
<td>6.24</td>
<td>5.92</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>149.00</td>
<td>160.00</td>
<td>150.00</td>
</tr>
<tr>
<td>% de elongacion</td>
<td>10.00</td>
<td>9.50</td>
<td>13.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>840.00</td>
<td>800.00</td>
<td>860.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Método de Medición del Matiz

En todos los colorantes la intensidad de color baja, y la diferencia en matiz difiere en cada colorante como se detalla a continuación, para el Globe Yellow 7% el color se va ligeramente al verde, para el Globebix EXL 3% el matiz vira para el amarillo rojizo, perdiendo la tonalidad azul y para el colorante Carmín líquido 3K con el detergente y dispersante el matiz vira al azul y con el reductor el matiz vira ligeramente al amarillo.

Por lo que la elección del insumo para la mejora de solidez va a depender directamente a que matiz final de color queremos llegar.

Método de Medición de Solideces

Las solideces al frote seco y húmedo deben ser garantizadas en cualquier prenda textil. En este caso de estudio que se está trabajando con colorantes que fijan en un proceso de mordentado, tenemos que lograr sacar el remanente de colorante que permanece en la superficie de la fibra, no fijado, que es el que se desprende frente a un proceso mecánico que es la fricción frente a un testigo blanco.

Tabla 38. Resultados de solideces al frote seco y húmedo después de tratados de mejora.

<table>
<thead>
<tr>
<th></th>
<th>Antes del Tratado</th>
<th>Después del Tratado</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciación Visual</td>
<td>Cuantificación DataColor</td>
<td>Apreciación Visual</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
<td>Frote Seco</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>3/4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Detergente</td>
<td>Dispersante</td>
<td>Reductor</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Detergente</td>
<td>Dispersante</td>
<td>Reductor</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Detergente</td>
<td>Dispersante</td>
<td>Reductor</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 39. Resultados Visuales de solideces al frote seco y húmedo después de tratados de mejora

<table>
<thead>
<tr>
<th></th>
<th>Antes del Tratado</th>
<th>Despues del Tratado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciacion Visual</td>
<td>Apreciacion Visual</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>Detergente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersante</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reductor</td>
<td></td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>Detergente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersante</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reductor</td>
<td></td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>Detergente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersante</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reductor</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
En la tabla 37 y 38: El colorante Globe Yellow 7%, el tratado tanto con el detergente, dispersante y reductor, en frote seco mejora medio punto, y en el frote húmedo 1 ½ punto. Para el colorante Globebix EXL 3%, para el frote seco tanto para detergente y dispersante, mejora 1 punto, y para el frote húmedo mejora en 2 puntos. En el colorante Carmín líquido K3, la solidez al frote seco se mantiene y el frote húmedo mejora ½ punto con detergente y dispersante.

4.9. Resultado de prueba 9: Determinación de la solidez a la luz

Como ya hemos mencionado anteriormente, los colorantes naturales que actúan sobre una fibra proteica con un mordiente no garantizan excelentes solideces a la luz, sin embargo el mordiente utilizado tiene mediana resistencia según bibliografía.

La valoración con la escala de grises para el colorante Globe Yellow 7% es 1, para el colorante Globebix EXL es ½ y para el colorante Carmin Líquido K3 es 5.

Método de Medición del Matiz

A continuación se muestras los gráficos de fuerza color para cada uno de los colorantes:
Gráfico 14. Fuerza color resultante de 20 horas de exposición a la luz solar del colorante Globe Yellow 7%.

En la Gráfica 14, en la curva vemos la diferencia de fuerza color de la muestra expuesta es del 35.04% menos intensa que la muestra enmascarada, más clara, menos saturada y más verde y azul.

Fuente: Lecturas DataColor.
Gráfico 15. Fuerza color resultante de 20 horas de exposición a la luz solar del Colorante Globebix 3%.

En la curva vemos la diferencia de fuerza color de la muestra expuesta es del 44.27% menos intensa que la muestra enmascarada, más clara, menos saturada y más verde y azul.

Fuente: Lecturas DataColor.

La curva en la gráfica muestra que la muestra expuesta es del 99.88% menos intensa que la muestra enmascarada, más clara, menos saturada y más verde y azul.

Fuente: Lecturas DataColor.
4.10. Resultados de prueba 10: Determinación a la solidez al lavado

Método de Medición de Solideces

Se realizaron las pruebas de solidez al lavado a las siguientes pruebas por ser estas cruciales en el proceso de teñido:

Prueba 4. Determinación del número de baños a trabajar.

No se observa diferencia de resultados notable al trabajar con 1 baño o 2 baños. Como vemos en la tabla 39 y 40: Para el colorante Globe Yellow 7% la mejor solidez está en la banda de oveja con una puntuación de 5 y la más baja en la banda del algodón blanqueado no mercerizado con 2 puntos. Para el Globebix EXL la mejor solidez está en la banda de oveja con una puntuación de 5 y la más baja en la banda del algodón blanqueado no mercerizado con 1/2 punto. Para el Carmín Liquido K3 la mejor solidez está en la banda de oveja con una puntuación de 4/5 y la más baja en la banda del algodón blanqueado no mercerizado con 3/4 punto.

Tabla 40. Resultados de solidez al lavado para 1 baño versus 2 baños

<table>
<thead>
<tr>
<th></th>
<th>Acetato Celulosa</th>
<th>Algodón blanqueado</th>
<th>Nylon 6.6</th>
<th>Poliéster</th>
<th>Acrílico</th>
<th>Oveja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 baño</td>
<td>4/5</td>
<td>2</td>
<td>2/3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2 baños</td>
<td>4/5</td>
<td>2</td>
<td>2/3</td>
<td>4/5</td>
<td>4/5</td>
<td>5</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 baño</td>
<td>4/5</td>
<td>1/2</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>5</td>
</tr>
<tr>
<td>2 baños</td>
<td>4/5</td>
<td>1/2</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>5</td>
</tr>
<tr>
<td>Carmín liquido K3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Lecturas DataColor.
Tabla 41. Resultados Visuales de la solidez al lavado para 1 baño versus 2 baños

<table>
<thead>
<tr>
<th></th>
<th>Acetato Celulosa</th>
<th>Algodón blanqueado no mercerizado</th>
<th>Nylon 6.6</th>
<th>Poliéster</th>
<th>Acrílico</th>
<th>Oveja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
</tr>
<tr>
<td>1 baño</td>
<td></td>
</tr>
<tr>
<td>2 baños</td>
<td></td>
</tr>
</tbody>
</table>

Globebix EXL 3%	![Globebix EXL 3%](image)
1 baño	![Globebix EXL 3%](image)
2 baños	![Globebix EXL 3%](image)

Carmin líquido K3	![Carmin líquido K3](image)
1 baño	![Carmin líquido K3](image)
2 baños	![Carmin líquido K3](image)

Fuente: Elaboración Propia.

Prueba 5: Determinación del dador de ácido/álcali y la concentración de mordiente.

A diferentes valores de pH trabajados con cada colorante no se observa mayor diferencia entre ellos. En las tablas 41 y 42: Para el colorante Globe Yellow 7% en todos el valor para la banda de oveja es 4/5 y el más bajo resultado es de 2 para los ácidos y
1 para los básicos en la banda de algodón blanqueado no mercerizado. Para el Globebix EXL el mejor resultado en todos es 5 en la banda de oveja, y ½ punto para los ácidos y 1 para los básicos también en la banda de algodón banqueado no mercerizado. Para el Carmín Liquido K3 en todos los pH el mejor valor es 4 en la banda de oveja y 3 en la banda de algodón banqueado no mercerizado.

Tabla 42. Resultados de solidez al lavado con diferente dador ácido/álcali

<table>
<thead>
<tr>
<th></th>
<th>Acetato Celulosa</th>
<th>Algodón blanqueado no mercerizado</th>
<th>Nylon 6.6</th>
<th>Poliéster</th>
<th>Acrílico</th>
<th>Oveja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac. Acético</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Ac. Citrico</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Carbonato</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Amoniaco</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac. Acético</td>
<td>4</td>
<td>1/2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Ac. Citrico</td>
<td>4</td>
<td>1/2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Carbonato</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Amoniaco</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Carmín liquido K3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac. Acético</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4</td>
</tr>
<tr>
<td>Ac. Citrico</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4</td>
</tr>
<tr>
<td>Carbonato</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4</td>
</tr>
<tr>
<td>Amoniaco</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.
Tabla 43. Resultados Visuales de solidez al lavado con diferente dador acido/álcali

| Fuente: Elaboración Propia. |
Prueba 9: Pruebas para mejorar las solideces al frote seco y húmedo.

En las tablas 43 y 44: Los diferentes tratados con detergente, dispersante y reductor con el colorante Globe Yellow 7% el mejor resultado es 4/5 en la banda de oveja y el más bajo es de 2 en la banda de algodón blanqueado no mercerizado. Para el Globebix EXL el mejor resultado es 4/5 en la banda de oveja y el más bajo de 1 en la banda de algodón blanqueado no mercerizado. Para Carmín Liquido K3 el mejor resultado es 5 en la banda de oveja y 4/5 en general en las otras bandas.

Tabla 44. Resultados de solidez al lavado para mejorar solideces al Frote seco y húmedo.

<table>
<thead>
<tr>
<th></th>
<th>Acetato Celulosa</th>
<th>Algodón blanqueado no mercerizado</th>
<th>Nylon 6.6</th>
<th>Poliéster</th>
<th>Acrílico</th>
<th>Oveja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detergente</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Dispersante</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Reductor</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detergente</td>
<td>4</td>
<td>1/2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Dispersante</td>
<td>4</td>
<td>1/2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Reductor</td>
<td>4</td>
<td>1/2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4/5</td>
</tr>
<tr>
<td>Carmín liquido K3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detergente</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Dispersante</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Reductor</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.
Tabla 45. Resultados visuales de solidez al lavado para mejorar solideces al Frote seco y húmedo.

<table>
<thead>
<tr>
<th></th>
<th>Acetato Celulosa</th>
<th>Algodon blanqueado no mercerizado</th>
<th>Nylon 6.6</th>
<th>Poliester</th>
<th>Acrilico</th>
<th>Oveja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td>Detergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>Detergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>Detergente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispersante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.
4.11. Resultados de prueba 11: Determinación del desmontado con diferentes productos auxiliares

Método de Medición del Matiz

Auxiliar para el desmontado: Sulfato de Sodio

Respecto al matiz para el colorante Globe Yellow 7% después de la descarga el color vira a un tono más verdoso azulado. El porcentaje de colorante descargado es 3.59%.

Para el colorante Globebix EXL 3% después de la descarga el color vira a un tono más azul. El porcentaje de colorante descargado es 18.86%.

Para el colorante Carmín Liquido K3 después de la descarga el color vira a un tono más azulado. El porcentaje de colorante descargado es 9.45%.

Como se ve en los gráficos de las lecturas del DataColor en el **Anexo 7. Gráficos de las lecturas del DataColor para el desmontado con Sulfato de Sodio. Página 222.**

Auxiliar para el desmontado: Reductor

Respecto al matiz para el colorante Globe Yellow 7% después de la descarga el color vira a un tono más verde y amarillo. El porcentaje de colorante descargado es 3.14%.

Para el colorante Globebix EXL después de la descarga el color vira a un tono más verde y amarillo. El porcentaje de colorante descargado es 0.5%.

Para el colorante Carmín Liquido K3 después de la descarga el color vira a un tono más rojo y amarillo. El porcentaje de colorante descargado es 1.47%.

Como se ve en los gráficos de las lecturas del DataColor en el **Anexo 8. Gráficos de las lecturas del DataColor para el desmontado con Reductor. Página 228.**
Comparando ambos auxiliares, se tiene mejores resultados con el auxiliar de descarga sulfato de sodio, como consecuencia de que el porcentaje de descarga es mayor como se ha podido observar en los resultados de fuerza color.

** Método de Medición de Solideces **

Respecto a las solideces al frote seco y húmedo, en las tablas 45 y 46 se muestra que: Para el Globe Yellow 7% mejora 1 punto en ambos frotes al igual que con el Globebix EXL, para el Carmín Liquido K3 solo mejora ½ punto en el frote húmedo.

Tabla 46. Solideces al frote seco y húmedo, previo y post desmontado con Auxiliar: Sulfato de Sodio.

<table>
<thead>
<tr>
<th></th>
<th>Antes de la Descarga</th>
<th></th>
<th>Despues de la Descarga</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciacion Visual</td>
<td>Quantificacion DataColor</td>
<td>Apreciacion Visual</td>
<td>Quantificacion DataColor</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>3/4</td>
<td>3</td>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>3</td>
<td>2/3</td>
<td>2/3</td>
<td>2</td>
</tr>
<tr>
<td>Carmín liquido K3</td>
<td>3</td>
<td>2/3</td>
<td>2/3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 47. Solideces visuales al frote seco y húmedo, previo y post desmontado con Auxiliar: Sulfato de Sodio.

<table>
<thead>
<tr>
<th></th>
<th>Antes de la descarga</th>
<th>Después de la descarga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Húmedo</td>
</tr>
<tr>
<td>Globe Yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globebix EXL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmín líquido K3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 48. Solideces al frote seco y húmedo, previo y post desmontado con Auxiliar: Reductor.

<table>
<thead>
<tr>
<th></th>
<th>Antes de la Descarga</th>
<th>Después de la Descarga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciación Visual</td>
<td>Cuantificación DataColor</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Húmedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td>Carmín líquido K3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 49. Solideces visuales al frote seco y húmedo, previo y post desmontado con Auxiliar: Reductor.

<table>
<thead>
<tr>
<th></th>
<th>Antes de la Descarga</th>
<th>Despues de la Descarga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apreciacion Visual</td>
<td>Apreciacion Visual</td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En las tablas 47 y 48, se muestra: Para el Globe Yellow 7% mejora 1 punto en frote seco y 1 ½ en el frote húmedo. Para el Globebix EXL mejora solo ½ punto en el frote húmedo. Para el Carmin Liquido K3 mejora 1 punto en el frote seco.

4.12. **Resultados de prueba 12: Ensayo Experimental con mayor concentración de mordiente.**

Después de analizar los resultados de la Prueba 11: Determinación del desmontado con diferentes productos auxiliares, se observó que el porcentaje de colorante descargado no es significativo para el fin, sin embargo en los resultados de las solideces al frote seco y húmedo se notó que mejoraron en mayor cantidad las realizadas con los colorantes Globe Yellow 7% y Globebix EXL y en menor cantidad para el colorante Carmin Liquido K3, por lo que llegamos a concluir que a mayor cantidad de sal
las solideces podrían mejorar, razón por la cual se decidió experimentar aumentando la concentración de mordiente a 25%, siendo los resultados los siguientes:

Método de Medición de la Calidad del Hilado

Tabla 50. Resultados de Calidad de Hilado para pruebas con 25% de Mordiente

<table>
<thead>
<tr>
<th>Antes Teñido</th>
<th>Ensayo 1</th>
<th>Ensayo 2</th>
<th>Ensayo 3</th>
<th>PROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torsion S</td>
<td>138.00</td>
<td>148</td>
<td>144</td>
<td>143.33</td>
</tr>
<tr>
<td>% de elongación</td>
<td>10.5</td>
<td>13</td>
<td>15</td>
<td>12.83</td>
</tr>
<tr>
<td>Resistencia</td>
<td>820</td>
<td>860</td>
<td>880</td>
<td>853.33</td>
</tr>
<tr>
<td>RKM</td>
<td>6.56</td>
<td>6.88</td>
<td>7.04</td>
<td>6.83</td>
</tr>
<tr>
<td>Globe Yellow</td>
<td>Torsion S</td>
<td>149.00</td>
<td>148</td>
<td>150</td>
</tr>
<tr>
<td>% de elongación</td>
<td>18</td>
<td>9</td>
<td>6</td>
<td>11.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>940</td>
<td>800</td>
<td>740</td>
<td>826.67</td>
</tr>
<tr>
<td>RKM</td>
<td>7.52</td>
<td>6.40</td>
<td>5.92</td>
<td>6.61</td>
</tr>
<tr>
<td>Globebix EXL</td>
<td>Torsion S</td>
<td>152.00</td>
<td>143.00</td>
<td>146.00</td>
</tr>
<tr>
<td>% de elongación</td>
<td>9.50</td>
<td>10.00</td>
<td>16.00</td>
<td>11.83</td>
</tr>
<tr>
<td>Resistencia</td>
<td>860.00</td>
<td>820.00</td>
<td>880.00</td>
<td>853.33</td>
</tr>
<tr>
<td>RKM</td>
<td>6.88</td>
<td>6.56</td>
<td>7.04</td>
<td>6.83</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>Torsion S</td>
<td>151.00</td>
<td>139.00</td>
<td>146.00</td>
</tr>
<tr>
<td>% de elongación</td>
<td>8.00</td>
<td>10.00</td>
<td>7.50</td>
<td>8.50</td>
</tr>
<tr>
<td>Resistencia</td>
<td>820.00</td>
<td>900.00</td>
<td>800.00</td>
<td>840.00</td>
</tr>
<tr>
<td>RKM</td>
<td>6.56</td>
<td>7.20</td>
<td>6.40</td>
<td>6.72</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En la tabla 49 Observamos en los resultados del valor de RKM que no disminuye, lo que nos indica que la fibra conserva sus propiedades de elongación y resistencia, a pesar de la elevada cantidad de mordiente. Según Ana Roquero y Carmen Córdoba, en su “Manual de Tintes de origen natural para lana”, indican que una cantidad excesiva de mordiente vuelve la lana pegajosa, haciéndola perder sus propiedades.
Método de Medición del Matiz

Respecto al Matiz comparando con concentración de mordiente al 5%:

- Con el colorante Globe Yellow 7%, es más brillante y limpio.
- Con el colorante Globebix EXL 3%, el color vira a rojo.
- Con el colorante Carmín Liquido K3, la intensidad baja, conservando el matiz.

Método de Medición de Solideces

Tabla 51. Solideces al frote seco y húmedo

<table>
<thead>
<tr>
<th></th>
<th>Apreciación visual</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Con 5% mordiente</td>
<td>Con 25% mordiente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>2/3</td>
<td>1/2</td>
<td>4/5</td>
<td>3/4</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>4</td>
<td>1</td>
<td>4/5</td>
<td>3/4</td>
</tr>
<tr>
<td>Carmín liquido K3</td>
<td>3/4</td>
<td>2</td>
<td>3/4</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 52. Solideces visuales al frote seco y húmedo

<table>
<thead>
<tr>
<th></th>
<th>Con 5% mordiente</th>
<th>Con 25% mordiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apreciación Visual</td>
<td>Apreciación Visual</td>
<td></td>
</tr>
<tr>
<td>Frote Seco</td>
<td>Frote Humedo</td>
<td>Frote Seco</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmin líquido K3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Como se ve en las tablas 50 y 51: Para el Globe Yellow 7% mejora 2 puntos en frote seco y 2 en el frote húmedo. Para el Globebix EXL mejora 3 puntos en el frote seco y 2 puntos en el frote húmedo. Para el Carmin Liquido K3 los valores se mantienen tanto en el frote seco como en el húmedo.

Respecto a la solidez al Lavado.
<table>
<thead>
<tr>
<th></th>
<th>Acetato Celulosa</th>
<th>Algodón blanqueado no mercerizado</th>
<th>Nylon 6.6</th>
<th>Poliéster</th>
<th>Acrílico</th>
<th>Oveja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td>4</td>
<td>3</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>5</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/5</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 54. Solideces visuales al lavado

<table>
<thead>
<tr>
<th></th>
<th>Acetato Celulosa</th>
<th>Agropol manqueado no nacarizado</th>
<th>Nylon 6,6</th>
<th>Poliéster</th>
<th>Acrílico</th>
<th>Oveja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Como se puede observar en las tablas 52 y 53 las solideces al lavado son muy buenas, en general para los tres colorantes en estudio los valores según apreciación visual están entre 4 y 5 para todas las bandas de la multifibra.

La valoración con la escala de grises para la solidez a la luz trabajados con el 25% de mordiente son: para el colorante Globe Yellow 7% es 2, para el colorante Globebix EXL es 2/3 y para el colorante Carmin Liquido K3 es 5.
Método de medición de la Calidad del Hilado

Teniendo los resultados favorables utilizando 25% de mordiente, se decidió llevar la prueba a mayores concentraciones, para así evaluar el efecto de este en la fibra y concluir finalmente la concentración adecuada, teniendo los siguientes resultados para calidad de hilado:

Tabla 55. Resultados de Calidad de Hilado para pruebas con 40%, 55% y 70% de Mordiente.

<table>
<thead>
<tr>
<th>ENSEÑADO</th>
<th>ANTES</th>
<th>% de elongacion</th>
<th>Resistencia</th>
<th>RKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSEÑADO</td>
<td>Globe</td>
<td>7%</td>
<td>12.00</td>
<td>4.61</td>
</tr>
<tr>
<td>ENSEÑADO</td>
<td>Globebix</td>
<td>3%</td>
<td>14.00</td>
<td>6.33</td>
</tr>
<tr>
<td>ENSEÑADO</td>
<td>Carmin</td>
<td>liquido K3</td>
<td>14.00</td>
<td>6.33</td>
</tr>
<tr>
<td>ENSEÑADO</td>
<td>40% alumbre</td>
<td>Globe Yellow</td>
<td>14.00</td>
<td>6.33</td>
</tr>
<tr>
<td>ENSEÑADO</td>
<td>55% alumbre</td>
<td>Globebix EXL</td>
<td>14.00</td>
<td>6.33</td>
</tr>
<tr>
<td>ENSEÑADO</td>
<td>70% alumbre</td>
<td>Carmin liquido K3</td>
<td>14.00</td>
<td>6.33</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Como se puede ver en la tabla 54, la calidad del hilado se ve deteriorada a medida que la concentración fue aumentando, en 40% de alumbre se tiene un valor de resistencia kilométrica bajo el promedio para la calidad de alpaca, con un valor de 4.64;
para la concentración de 55% se tiene un valor de 4.85 y finalmente para la concentración de 70% el valor es de 4.61. Estos valores confirman el impacto de las altas concentraciones de mordientes sobre fibras naturales.

Independiente al matiz que se desea obtener, es conveniente utilizar 25% de mordiente ya que las propiedades del hilado se mantienen intactas, y las solideces al frote seco, frote húmedo y lavado son notoriamente mejores.

4.13. Resultados de prueba 13: Comparativa con diferentes insumos para la obtención de mejor tacto en hilado

Método de medición de la Calidad del Hilado
Tabla 56. Comparativa con diferentes insumos para la obtención de mejor tacto en hilado

<table>
<thead>
<tr>
<th></th>
<th>Sin Auxiliar</th>
<th>Tartrato Acido de Potasio</th>
<th>Miralan G</th>
<th>Acido Graso</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensayo 1</td>
<td>Ensayo 2</td>
<td>Ensayo 3</td>
<td>PROM</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsion S</td>
<td>149</td>
<td>140</td>
<td>145</td>
<td>144.67</td>
</tr>
<tr>
<td>% de elongación</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>610</td>
<td>680</td>
<td>750</td>
<td>680.00</td>
</tr>
<tr>
<td>RKM</td>
<td>4.88</td>
<td>5.44</td>
<td>6</td>
<td>5.44</td>
</tr>
<tr>
<td>Globex ERL-5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsion S</td>
<td>155</td>
<td>145</td>
<td>153</td>
<td>151.00</td>
</tr>
<tr>
<td>% de elongación</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>720</td>
<td>650</td>
<td>680</td>
<td>683.33</td>
</tr>
<tr>
<td>RKM</td>
<td>5.76</td>
<td>5.2</td>
<td>5.44</td>
<td>5.47</td>
</tr>
<tr>
<td>Camino Llano 7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torsion S</td>
<td>149</td>
<td>140</td>
<td>141</td>
<td>143.33</td>
</tr>
<tr>
<td>% de elongación</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>10.00</td>
</tr>
<tr>
<td>Resistencia</td>
<td>760</td>
<td>920</td>
<td>760</td>
<td>813.33</td>
</tr>
<tr>
<td>RKM</td>
<td>6.08</td>
<td>7.36</td>
<td>6.08</td>
<td>6.52</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Como podemos observar en la tabla 55, la mejor calidad de hilado es con el ácido graso. Todos dentro del estándar para sustrato de fibra de alpaca Suri título 2/16.

En términos generales, para mejorar el tacto y mantener la calidad del hilado la más recomendada es el ácido graso. Para obtener colores más brillantes y limpios con buen tacto el recomendable es el tartrato acido de potasio.

Método de medición del Matiz

Cada color reacciona de manera distinta por su estructura por lo que es independiente, cada uno se debe procesar de manera específica, con características propias, para asegurar reproducibilidad de color.

Respecto al matiz para los tres colorantes, Globe Yellow 7%, Globebix EXL y Carmen Liquido K3, trabajados con Cremor Tártaro los matices son los más brillantes y limpios en comparación con los otros, debido al pH acido que da este auxiliar en el baño de mordentado.

Los valores de pH de cada auxiliar en disolución 1/10 para el Cremor Tártaro es 3.6, para el Miralan Q 7.03 y para el ácido graso es de 5.77.

A continuación en la tabla 56, se detallan los valores de pH para la obtención de mejor tacto en hilado
Tabla 57. Valores de pH para los baños con los diferentes insumos para la obtención de mejor tacto en hilado

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
</tr>
<tr>
<td>TEÑIDO</td>
<td>4.20</td>
</tr>
<tr>
<td>MORDENTADO</td>
<td>4.54</td>
</tr>
<tr>
<td>TARTRATO ACIDO DE POTASIO</td>
<td>3.27</td>
</tr>
<tr>
<td>MIRALAN Q</td>
<td>4.54</td>
</tr>
<tr>
<td>ACIDO GRASO</td>
<td>4.63</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
</tr>
<tr>
<td>TEÑIDO</td>
<td>4.70</td>
</tr>
<tr>
<td>MORDENTADO</td>
<td>4.54</td>
</tr>
<tr>
<td>TARTRATO ACIDO DE POTASIO</td>
<td>3.48</td>
</tr>
<tr>
<td>MIRALAN Q</td>
<td>4.54</td>
</tr>
<tr>
<td>ACIDO GRASO</td>
<td>4.74</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
</tr>
<tr>
<td>TEÑIDO</td>
<td>4.30</td>
</tr>
<tr>
<td>MORDENTADO</td>
<td>4.54</td>
</tr>
<tr>
<td>TARTRATO ACIDO DE POTASIO</td>
<td>3.40</td>
</tr>
<tr>
<td>MIRALAN Q</td>
<td>4.48</td>
</tr>
<tr>
<td>ACIDO GRASO</td>
<td>4.56</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Método de medición de Solideces

Tabla 58. Comparativa de solideces al frote seco y húmedo, con diferentes insumos para mejorar tacto

<table>
<thead>
<tr>
<th>Insumo</th>
<th>Apreciacion Visual</th>
<th>Cuantificacion DataColor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nada</td>
<td>3/4</td>
<td>3</td>
</tr>
<tr>
<td>Cremor</td>
<td>4/5</td>
<td>3/4</td>
</tr>
<tr>
<td>Miralan</td>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>Acido Graso</td>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nada</td>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td>Cremor</td>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>Miralan</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Acido Graso</td>
<td>4</td>
<td>3/4</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nada</td>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>Cremor</td>
<td>4</td>
<td>2/3</td>
</tr>
<tr>
<td>Miralan</td>
<td>3</td>
<td>2/3</td>
</tr>
<tr>
<td>Acido Graso</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 59. Comparativas Visuales de solideces al frote seco y húmedo, con diferentes insumos para mejorar tacto

<table>
<thead>
<tr>
<th></th>
<th>Globe Yellow 7%</th>
<th>Globebix EXL 3%</th>
<th>Carmin líquido K3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cremor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miralin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido Graso</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Como vemos en las tablas 56 y 57: En el colorante Globe Yellow 7% se obtienen las mejores solideces con el tartrato acido de potasio, con frote seco 4/5 y frote húmedo 3/4. Para el colorante Globebix EXL 3%, las mejores solideces se obtienen sin adicionar ningún insumo y con el ácido graso con solideces al frote seco 4 y frote húmedo 3/4. En el colorante Carmín líquido K3, el insumo que da mejores solideces es el ácido graso, con puntuación de frote seco y frote húmedo de 3.

Método de medición del Matiz

La paleta es amplia en los matices amarillos, marrones y rojos, como se muestra a continuación:

Imagen 8. Paleta de color.

Fuente: Elaboración propia.
Tabla 60. Comparativa de solideces al frote seco y húmedo, para diferentes tricromías.

<table>
<thead>
<tr>
<th>Apreciacion Visual</th>
<th>Cuantificacion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frote Seco</td>
</tr>
<tr>
<td>0.5% Globe Yellow 7% + 0.5% Globebix EXL + 0.5% Carmin Liquido K3</td>
<td>3</td>
</tr>
<tr>
<td>0.5% Globe Yellow 7% + 0.5% Globebix EXL</td>
<td>3/4</td>
</tr>
<tr>
<td>0.5% Globe Yellow 7% + 0.5% Carmin Liquido K3</td>
<td>3/4</td>
</tr>
<tr>
<td>0.5% Globebix EXL + 0.5% Carmin Liquido K6</td>
<td>3/4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Tabla 61. Comparativa visual de solideces al frote seco y húmedo, para diferentes tricromías.

<table>
<thead>
<tr>
<th></th>
<th>Frote Seco</th>
<th>Frote Humedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5% Globe Yellow 7% + 0.5% Globebix EXL + 0.5% Carmin Líquido K3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5% Globe Yellow 7% + 0.5% Globebix EXL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5% Globe Yellow 7% + 0.5% Carmin Líquido K5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5% Globebix EXL + 0.5% Carmin Líquido K6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Como se observa en las tablas 58 y 59 las solideces están dentro del promedio de trabajo, siendo el promedio de solidez en frote seco ¾ y en frote húmedo 3 para las distintas combinaciones de tricromías.

4.15. Resultados de prueba 15: Determinación de reproducibilidad a nivel laboratorio

La reproducibilidad es un tema crucial en tintorería, pues de esta depende el éxito del desarrollo de una receta desde el momento en que laboratorio hace la
formulación, hasta que se produce en planta sin necesidad que sea corregida por variación de color.

Todas las pruebas realizadas en la presente investigación, se hicieron bajo las mismas condiciones, teniendo cuidado particular en setear el pH, pues este es causa directa de cambio de matiz. Es importante conocer con qué valor de pH se llega a un matiz determinado, esto puede estar indicado en una ficha técnica.

Los siguientes puntos de control:

- Peso de muestra: 10 gramos
- Relación de baño: 1/20, lo que quiere decir que para 1 gramo de muestra se usaron 20ml de agua blanda, en este caso se trabajó con 10 gramos de sustrato en 200ml de agua.
- Temperaturas: Para el teñido y mordentado es de 98C. Las maquinas teñidoras de laboratorio cuentan con un control automático donde la precisión de la temperatura es de +/- 2C.
- Tiempos: El tiempo de teñido y mordentado fue de 60 minutos.

Método de medición del Matiz

En el Anexo 9. Lecturas de Pasa- Falla de reproducibilidad. Página 234, se muestran, las lecturas de Pasa- Falla realizadas en el espectrofotómetro DataColor 600, donde todas las lecturas pasan la prueba de reproducibilidad con valores de delta E (DE) menores a 1, tolerancia de trabajo aceptado en la mayoría de industrias textiles como aceptable para la aprobación de color.

Los valores de pH en la etapa de mordentado fueron:

- Para colorante Globe Yellow 7%: 3.72
- Para colorante Globebix EXL 3%: 4.08
- Para colorante Carmín líquido K3: 3.80
4.16. Resultados de prueba 16: Determinación de fuerza color

Método de medición del Matiz

Gráfico 17. Fuerza Color para el colorante Globe Yellow 7% en comparativa con desarrollo en tricromía Colorantes Sandolan

<table>
<thead>
<tr>
<th>Nombre de estándar</th>
<th>234 de 236</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBE YELLOW 7%</td>
<td></td>
</tr>
<tr>
<td>Nombre de lote</td>
<td>2 de 2</td>
</tr>
<tr>
<td>SANDOLAN YELLOW</td>
<td></td>
</tr>
<tr>
<td>Fecha: 09-Aug-14</td>
<td>Hora: 18:41</td>
</tr>
</tbody>
</table>

Fuerza: **102.63 %**

El lote está: más oscuro
menos saturado
más verde

<table>
<thead>
<tr>
<th>Illum./Obs.</th>
<th>DL*</th>
<th>Do*</th>
<th>Db*</th>
<th>DC*</th>
<th>DH*</th>
<th>DE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>D65 10 Deg</td>
<td>-0.74</td>
<td>-0.47</td>
<td>3.48</td>
<td>3.37</td>
<td>0.99</td>
<td>0.89</td>
</tr>
<tr>
<td>CWF 10 Deg</td>
<td>-1.25</td>
<td>1.55</td>
<td>3.89</td>
<td>4.01</td>
<td>-1.20</td>
<td>0.99</td>
</tr>
<tr>
<td>A10 Deg</td>
<td>-0.77</td>
<td>1.40</td>
<td>1.31</td>
<td>1.59</td>
<td>-1.06</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Haciendo la comparación del Colorante Natural Globe Yellow 7% con su equivalente en matiz desarrollado con Colorantes Sandolan (ácidos), la fuerza de Sandolan es 2.63% mayor, siendo más oscuro, menos saturado y más verde, como se muestra en la gráfica 17.

Gráfico 18. Fuerza Color para el colorante Globe Yellow 7% en comparativa con desarrollo en tricromía Colorantes Lanaset.

Fuente: Elaboración Propia
Como vemos en la Gráfica 18: Haciendo la comparación del Colorante Natural Globe Yellow 7% con su equivalente en matiz desarrollado con Colorantes Lanaset (complejo metalicos), la fuerza de Lanaset es 3.17% mayor, siendo más oscuro, menos saturado y más verde.

Gráfico 19. Fuerza Color para el colorante Globebix EXL 3% en comparativa con desarrollo en tricromía Colorantes Sandolan.

Fuente: Elaboración Propia
Como vemos en la gráfica 19: Haciendo la comparación del Colorante Natural Globebix EXL con su equivalente en matiz desarrollado con Colorantes Sandolan (ácidos), la fuerza de Sandolan es 1.03% menor, siendo más claro, menos saturado y menos rojo.

Gráfico 20. Fuerza Color para el colorante Globebix EXL 3% en comparativa con desarrollo en tricromía Colorantes Lanaset.

Fuente: Elaboración Propia
Como vemos en la gráfica 20: Haciendo la comparación del Colorante Natural Globebix EXL con su equivalente en matiz desarrollado con Colorantes Lanaset (complejo metálicos), la fuerza de Lanaset es 2.13% menor, siendo más claro, menos saturado y más amarillo.

Fuente: Elaboración Propia
Como vemos en la gráfica 21: Haciendo la comparación del Colorante Natural Carmín Liquido con su equivalente en matiz desarrollado con Colorantes Sandolan (ácidos), la fuerza de Sandolan es 2.69% menor, siendo más claro, menos saturado y más azul.

Gráfico 22. Fuerza Color para el colorante Carmín Liquido K3 en comparativa con desarrollo en tricromía Colorantes Lanaset

Fuente: Elaboración Propia
Como vemos en la gráfica 22: Haciendo la comparación del Colorante Natural Carmín Liquido con su equivalente en matiz desarrollado con Colorantes Lanaset (complejo metálico), la fuerza de Lanaset es 1.69% menor, siendo más claro, menos saturado y más azul.

4.17. Resultados de prueba 17: Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales

Método de medición del Matiz

Se desarrolló el matiz de cada uno de los colorantes en estudio: Globe Yellow 7%, Globebix EXL 3% y Carmín Liquido K3 con los colorantes sintéticos Ácidos (Sandolan) y Complejo – metálicos (Lanaset), llegando a los mismos matices, se evaluó estos de forma visual y a la vez se dio lecturas de Pasa-Falla con el Datacolor, en el Anexo 10. Lecturas de Pasa- Falla Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales. Página 237. Se muestran los resultados de las lecturas.
Tabla 62. Resultados de matiz: Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales

<table>
<thead>
<tr>
<th>COLORANTES</th>
<th>COLORANTES</th>
<th>COLORANTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Yellow 7%</td>
<td>Globebix EXL 3%</td>
<td>Campeo liquido K3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Método de medición de Solideces

Respecto a las solideces al frote seco y húmedo de las tablas 60 y 61, los resultados con colorantes sintéticos son superiores como se esperaba obtener, sin embargo las solideces alcanzadas con colorantes en estudio se encuentran en promedio $\frac{1}{2}$ punto abajo, encontrándose aun dentro de los estándares requeridos por el mercado internacional.
Tabla 63. Comparativa de solideces al frote seco y húmedo, para colorantes sintéticos versus colorantes Naturales.

<table>
<thead>
<tr>
<th>Desarrollo con colorantes sintéticos</th>
<th>Colorantes naturales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandolan</td>
<td>Lanaset</td>
</tr>
<tr>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td>5 4/5</td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td>5 4/5</td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td>5 4/5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Tabla 64. Comparativa Visual de solideces al frote seco y húmedo, para colorantes sintéticos versus colorantes Naturales.

<table>
<thead>
<tr>
<th>Desarrollo con colorantes sintéticos</th>
<th>Colorantes naturales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandolan</td>
<td>Lanaset</td>
</tr>
<tr>
<td>Frote Seco</td>
<td>Frote Humedo</td>
</tr>
<tr>
<td>Globe Yellow 7%</td>
<td></td>
</tr>
<tr>
<td>Globebix EXL 3%</td>
<td></td>
</tr>
<tr>
<td>Carmin liquido K3</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Respecto a la solidez al lavado, de las tablas 62 y 63: los resultados con colorantes sintéticos son muy buenos, valoración 5, como los valores obtenidos con los colorantes en estudio, en promedio 4/5. Ambos se encuentran dentro de los estándares requeridos por el mercado internacional.
Tabla 65. Comparativa de solidez al Lavado, para colorantes sintéticos versus colorantes Naturales.

<table>
<thead>
<tr>
<th>Desarrollo con Colorantes Sintéticos</th>
<th>Colorantes Naturales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandolan</td>
<td>Lanaset</td>
</tr>
<tr>
<td>Acetato Celulosa</td>
<td>Acetato Celulosa</td>
</tr>
<tr>
<td>Algodón blanqueado no mercerizado</td>
<td>Algodón blanqueado no mercerizado</td>
</tr>
<tr>
<td>Nylon 6.6</td>
<td>Nylon 6.6</td>
</tr>
<tr>
<td>Poliéster</td>
<td>Poliéster</td>
</tr>
<tr>
<td>Acrílico</td>
<td>Acrílico</td>
</tr>
<tr>
<td>Oveja</td>
<td>Oveja</td>
</tr>
</tbody>
</table>

Globe Yellow 7%	**Globebix EXL 3%**
Imitación Globe Yellow 7%	Imitación Globebix EXL 3%
5	5
4	3
4/5	4/5
4/5	4/5
5	5

Carmín líquido K3	**Carmín líquido K3**
Imitación Carmín líquido K3	Imitación Carmín líquido K3
5	5
4/5	4/5
4/5	4/5
4/5	4/5
5	5

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Desarrollo con Colorantes Sintéticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANDOLAN MF</td>
</tr>
<tr>
<td>LANASET</td>
</tr>
<tr>
<td>COLORANTES NATURALES</td>
</tr>
<tr>
<td>Acetato Celulosa</td>
</tr>
<tr>
<td>Algodón blanqueado no mercerizado</td>
</tr>
<tr>
<td>Nylon 6.6</td>
</tr>
<tr>
<td>Poliéster</td>
</tr>
<tr>
<td>Acrílico</td>
</tr>
<tr>
<td>Oveja</td>
</tr>
<tr>
<td>Acetato Celulosa</td>
</tr>
<tr>
<td>Algodón blanqueado no mercerizado</td>
</tr>
<tr>
<td>Nylon 6.6</td>
</tr>
<tr>
<td>Poliéster</td>
</tr>
<tr>
<td>Acrílico</td>
</tr>
<tr>
<td>Oveja</td>
</tr>
</tbody>
</table>

| **Globe Yellow 7%** |
| Imitación Globe Yellow 7% |
| 5 |
| 4 |
| 4/5 |
| 4/5 |
| 5 |

| **Globebix EXL 3%** |
| Imitación Globebix EXL 3% |
| 5 |
| 4 |
| 4/5 |
| 4/5 |
| 5 |

| **Carmín líquido K3** |
| Imitación Carmín líquido K3 |
| 5 |
| 4/5 |
| 4/5 |
| 4/5 |
| 5 |

Fuente: Elaboración propia

164
CONCLUSIONES

1. El pH, repercute directamente en el matiz, por lo que cada valor da como resultado un distinto matiz sin dañar el hilado.

<table>
<thead>
<tr>
<th>% CONCENTRACION DE SULFATO ALUMINICO POTASICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5% 3% 4% 5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Globe Yellow 7%</th>
<th>ACIDO ACETICO</th>
<th>Matices amarillos brillantes y limpios</th>
<th>El matiz se hace rojizo a mayor concentracion de mordiente. Diferencia drastica de 2.5% a 5%.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACIDO CITRICO</td>
<td>Matices amarillos apagados</td>
<td>A mayor cantidad de mordiente el matiz es mas brillante y limpio. Diferencia drastica de 2.5% a 5%.</td>
</tr>
<tr>
<td></td>
<td>AMONIACO</td>
<td>Matiz opaco.</td>
<td>Color menos intenso y verdoso. Matiz opaco.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Globebix EXL 3%</th>
<th>ACIDO ACETICO</th>
<th>Matices anaranjados.</th>
<th>No se observa diferencia en matiz.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CARBONATO DE SODIO</td>
<td>Matiz opaco y amarillento.</td>
<td>Matiz mas intenso y rojizo</td>
</tr>
<tr>
<td></td>
<td>AMONIACO</td>
<td>Matiz amarillentos.</td>
<td>A mayor cantidad de mordiente el matiz es mas intenso y rojizo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carmin liquido K3</th>
<th>ACIDO ACETICO</th>
<th>Matiz azulado.</th>
<th>El matiz se mantiene azulado dentro de los tonos rosas.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACIDO CITRICO</td>
<td>Matiz rosado.</td>
<td>Matiz rosado amarillento. Se mantiene el matiz rosa amarillento.</td>
</tr>
<tr>
<td></td>
<td>CARBONATO DE SODIO</td>
<td>Matiz opaco y azulado.</td>
<td>Matiz opaco y azulado.</td>
</tr>
<tr>
<td></td>
<td>AMONIACO</td>
<td>Matiz amarillentos intermedios entre los acidos.</td>
<td>El matiz se mantiene carmin en todas las concentraciones.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carmin liquido K3</th>
<th>ACIDO ACETICO</th>
<th>Matiz azulado.</th>
<th>El matiz se mantiene carmin en todas las concentraciones.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACIDO CITRICO</td>
<td>Matiz rosado.</td>
<td>Matiz rosado amarillento. Se mantiene el matiz rosa amarillento.</td>
</tr>
<tr>
<td></td>
<td>CARBONATO DE SODIO</td>
<td>Matiz opaco y azulado.</td>
<td>Matiz opaco y azulado.</td>
</tr>
<tr>
<td></td>
<td>AMONIACO</td>
<td>Matiz amarillentos intermedios entre los acidos.</td>
<td>El matiz se mantiene carmin en todas las concentraciones.</td>
</tr>
</tbody>
</table>
2. Se determinó que la concentración adecuada de trabajo para los colorantes de estructura Curcuminoide, Xantófila y Antroquinónica sobre sustrato de alpaca suri es 25%.

3. Los resultados observados fueron:
 a. El Dador de ácido/álcali: A baños de trabajo más ácidos el agotamiento del colorante es mejor.
 b. Concentración de mordiente: a mayor concentración de mordiente el agotamiento es menor para el colorante Carmín Líquido K3.

4. Los valor de la resistencia kilométrica (RKM) evaluados antes y después del proceso de teñido y mordentado para los colorantes en estudio se mantienen dentro de los estándares exigidos:
 Antes del teñido: 6.83
 Después del teñido:
 Colorante Globe Yellow 7%: 6.61
 Colorante Globebix EXL 3% 6.83
 Colorante Carmín Líquido K3: 6.72

5. Se logra una fuerza color equivalente a los colorantes Ácidos (Sandolan) y Complejo metálicos (Lanaset), en monocromía para los colorantes naturales y en tricromía para los colorantes sintéticos.
 Colorante Globe Yellow 7% comparado con tricromía Ácidos: Fuerza color 102.63%
 Colorante Globe Yellow 7% comparado con tricromía Complejo Metálicos: Fuerza color 103.17%
 Colorante Globebix EXL 3% comparado con tricromía Ácidos: Fuerza color 98.97%
 Colorante Globebix EXL 3% % comparado con tricromía Complejo Metálicos: Fuerza color 97.87%
Colorante Carmín Liquido K3 comparado con tricromía Ácidos: Fuerza color 97.31%
Colorante Carmín Liquido K3 comparado con tricromía Complejo Metálicos: Fuerza color 98.31%

6. La paleta es amplia en los matices amarillos, marrones y rojos con los colorantes y mordiente en estudio.

7. Los valores de solideces son:
 - Solidez al frote seco: promedio 4/5.
 - Solidez al frote húmedo: promedio ¾
 - Solidez al lavado: promedio 4/5
 - Solidez a la Luz para Globe Yellow 7% y Globebix EXL 3%: 2
 - Solidez a la Luz para Carmin Liquido K3: 5

8. Los colorantes sintéticos tienen excelentes solideces tanto frote seco, frote húmedo, solidez al lavado y solidez a luz, las solideces logradas en el presente estudio con colorantes naturales son muy buenas, lo que hace que estén dentro de los estándares exigidos dentro del mercado internacional, excepto la solidez a la luz.

 Promedio solidez del frote seco y húmedo para colorantes sintéticos: 5
 Promedio solidez del frote seco y húmedo para colorantes naturales: ¾
 Promedio solidez lavado para colorantes sintéticos: 5
 Promedio solidez lavado para colorantes naturales: 4/5
 Promedio solidez a la luz para colorantes sintéticos: 5
 Promedio solidez a la luz para colorantes naturales:
 - Colorante Globe Yellow 7%: 2
 - Colorante Globebix EXL 3%: 2/3
 - Colorante Carmín Liquido K3: 5
RECOMENDACIONES

1. Se recomienda no trabajar el sulfato Alumínico potásico en la etapa de mordentado a concentraciones mayores del 25%, debido al debilitamiento que este provoca en la calidad del hilado.

2. Si se trabaja con ácido cítrico en la etapa de teñido, se recomienda hacer pruebas dosificando el ácido, utilizando un buffer o sal textil como retardante para evitar el defecto veteadlo.

3. Se recomienda el uso de un ácido graso para darle mayor valor agregado a la prenda brindándole mayor confort.

4. Se recomienda una selección cuidadosa del mordiente a utilizar, analizando la composición de estos y el impacto que puedan causar en el ambiente. Así como en la manipulación de estos durante el proceso de teñido.

5. Es importante armar fichas técnicas por color con las variables de mayor influencia en el matiz como son: el pH de trabajo, dador de ácido/álcali y mordiente para obtener reproducibilidad lote a lote.
BIBLIOGRAFÍA

Vidal Salem. “Tingimento Textil” Fibras Conceitos e Tecnologías; Editorial Edgard Blucher. Segunda Edición. 2010

Jose Cegarra. “Fundamentos Científicos y Aplicados de la Tintura de Materias Textiles”. Universidad Politécnica de Barcelona. 1980

N. Schlumberger & Cie. “De la Fibra al Hilo”

Vidal Salem – Alessandro De Marchi – Felipe Goncalves de Menezes. “Ennoblecimiento Textil en la Práctica”

Separata Especial de Perú Textil 2006. Compañía de Industrias nacionales S.A.

Enciclopedia de la Ciencia y de la Tecnología, DANAE, Ediciones OCEANO.

- Archivos en Formato PDF
o Análisis científico de fibras arqueológicas
o Antocianinas como colorantes naturales compuestos bioactivos
o Antraquinonas
o Características productivas y textiles de la fibra de alpacas de raza Huacaya
o Catalogo Alpacas cusco
o Cinética de absorción de colorantes
o Cinética de colorantes naturales
o Clasificación de colorantes naturales
o Contrastación de fibras textiles de origen animal
o Extracción y uso de 3 pigmentos naturales como alternativa de colorante natural
o Las antocianinas como colorantes naturales
o Fibra de alpaca Huarcaya
o Guía de esquila
o Introducción de pigmentos naturales quinónicos
o Libro química y color en los textiles
o Manual para producción del Achiote
o Perfil comercial del achiote
o Pigmentos carotenoides
o Planta piloto para obtener colorante de la semilla de achiote
o Principales características de alpaca para posterior lavado
o Propiedades biológicas de los tintes naturales
o Situación actual de camélidos sudamericanos en Perú.
o “Fortalecimiento de Capacidades de Gestión y Comercialización de Líderes Alpaqueros de Chivay” ejecutado por ALPACAY & CECYCAP. Financiado por La Cooperación Técnica Belga - CTB.

• Sitios Web
 o http://www.ipacperu.org/otrocame.php.htm
o Buenas Prácticas de Esquila, Manejo de Vellón y Categorización de Fibra de Alpaca
o http://cursos.fadu.uba.ar/apuntes/Indumentaria%20I/unidad%20practica%20n%20%201/-%20Clasificacion%20de%20los%20tejidos.pdf
o http://www.paginaspersonales.unam.mx/files/472/COLORIMETRIA_NEWTON_GRASSMANN.pdf
o http://es.wikipedia.org/wiki/Ojo_humano#Retina
o http://hyperphysics.phy-astr.gsu.edu/hbasees/vision/colper.html#c3
o http://es.wikipedia.org/wiki/Espectrofot%C3%B3metro
o http://www.buenastareas.com/ensayos/Normas-Técnicas-Textiles/32124685.html
ANEXOS

Anexo 1. Equipos de medición de colorimetría

Es necesario contar un espectrofotómetro conectado a una computadora.

Un espectrofotómetro es un instrumento que tiene la capacidad de manejar un haz de Radiación Electromagnética (REM), comúnmente denominado Luz, separándolo en facilitar la identificación, calificación y cuantificación de su energía. Mide en función de su longitud de onda. Su eficiencia, resolución, sensibilidad y rango espectral, dependerán de las variables de diseño y de la selección de los componentes ópticos que lo conforman.

Cuando la luz atraviesa una sustancia, parte de la energía es absorbida. El color se debe a que estas absorben ciertas longitudes de onda de la luz blanca que incide sobre ellas, y sólo vemos aquellas longitudes de onda que no fueron absorbidas.

Componentes de un espectrofotómetro:

A. Fuente de luz

Esta fuente de luz que ilumina la muestra debe cumplir con las condiciones de estabilidad, direccionalidad, distribución de energía espectral continua y larga vida. Las fuentes empleadas son lámpara de tungsteno (Wolframio) y lámpara de arco de xenón.

B. Monocromador

Se usa para obtener luz monocromática. Está constituido por unas rendijas de entrada y salida, colimadores y el elemento de dispersión. Es decir, es un lente que lleva el haz de luz que entra con determinada longitud de onda hacia un prisma, el cual separa todas las longitudes de onda de ese haz de luz, y la longitud de onda leída se dirige hacia otro lente que direcciona ese
haz hacia la rendija de salida. El monocromador aísla las radiaciones de longitud de onda deseada que inciden o se reflejan desde el conjunto.

C. Compartimiento de Muestra
Aquí interaccionan la REM con la materia.

D. Detector
Es quien detecta una radiación.

E. Fotodetectores
En los instrumentos modernos se encuentra una serie de 16 fotodetectores para percibir la señal en forma simultánea en 16 longitudes de onda, cubriendo el espectro visible. Esto reduce el tiempo de medida, y minimiza las partes móviles del equipo.

Utilidad de trabajar con un software junto a un espectrofotómetro:

- Medición de coordenadas cromáticas.
- Obtención de curvas espectrales y longitud de onda
- Formulación y corrección de una muestra de color.
- Diferencia de color entre lotes.
- Medición del grado de blancura
- Puntuación en lectura de solideces
- Comparación fuerza color.
- Medición de metamerismo y desviación estándar de un color.
- Da mediciones de reflectancia y transmitancia del alto rendimiento.

Definiciones de software Data Color:

- Reflectancias de las muestras de calibración: Visualiza la reflectancia en relación con la longitud de onda.
Absorciones de las muestras de calibración: Visualiza la absorción (K/S) en relación con la longitud de onda.

Grafico longitud de onda para el gráfico K/S (conc.): Abre un cuadro de diálogo utilizado para seleccionar la longitud de onda para las siguientes curvas de absorción.

Grafico K/S (Conc.) para una longitud de onda específica: Visualiza la absorción para una longitud de onda seleccionada, en relación con la concentración de colorante.

Fuerza (Conc.): Visualiza la concentración para los colorantes seleccionados (en la ficha "Familia") en relación con la concentración de colorante.

Concentración es el sumatorio de las absorciones normales de la muestra.

Logaritmo Fuerza (Conc.): Visualiza logarítmicamente la absorción en relación con la concentración de colorante (K/S versus concentración.)
Anexo 2. Proceso Textil de la industrialización de la fibra Alpaca Suri

A) Esquila

Matéria prima: Alpaca Suri
Producto: Vellón de Alpaca Suri

Es la actividad que consiste en la extracción del vellón de la alpaca o "cosecha de la fibra". La temporada de esquila es entre diciembre y enero. Periodo en el que se presentan las lluvias y pocas heladas, así como el inicio de la recuperación de los pastos naturales (bofedales). Los métodos de esquila que se empleaban eran tradicionales, rudimentarios y poco eficientes. Como resultado, los criadores de alpacas entregaban al mercado su producción de fibra en forma deficiente reduciendo considerablemente el rendimiento de la misma, en especial de las calidades finas, producto de la contaminación ocasionada por el deficiente manipuleo de la fibra. El mercado de la fibra de Alpaca en el Perú ha cambiado sustancialmente en los últimos años producto del mejor precio que alcanzan ahora las calidades finas sobre las gruesas. Mientras que tradicionalmente se cotizaba la fibra de Alpaca por su peso, a partir de la primera mitad de los años noventa el énfasis del mercado ha cambiado hacia la compra diferenciada, premiando las calidades finas.

Una breve descripción del mejor sistema de esquila: Selección de los animales midiendo la longitud de la mecha en el lomo y el costillar medio. Se esquilarán alpacas cuya longitud de mecha mínima en el vellón es mayor a 3 pulgadas (7.5 centímetros). Los animales escogidos permanecen bajo techo desde la noche anterior, para evitar que estos se mojen, ya que la esquila se lleva a cabo en temporada de lluvias. Al día siguiente, en la playa de Esquila (Lugar especialmente acondicionado para la faena de esquila) se cepilla al animal de manera suave y completamente con una escobilla de plástico firme para eliminar todo tipo de impurezas y buena parte del pelo muerto, así como algo de cerda. Además, el
cepillado elimina las “chispas”, que son las puntas de los pelos apelmazados por efecto de la humedad y la tierra. Se retira el pelo grueso de la zona de la barriga hasta llegar al manto (pelos más finos), evitando así la contaminación. Una vez retirados los pelos gruesos se procede a cortar (esquilar) el manto propiamente dicho, que cubre la espalda pero no abarca cuello ni patas. Se procede a esquilar el cuello, hasta la base de la nuca. Fibra muy fina al igual que la del manto pero de pelo muy corto, clasificándose dentro de las fibras cortas. Se retiran los pelos de las patas para juntarlos con los pelos gruesos de la barriga.

De la esquila salen 2 clasificaciones: manto y bragas (patas, panza y pelos cortos).

B) Preselección y selección de materia prima

Materia Prima: Vellón de Alpaca Suri

Producto: fibra de alpaca Clasificada

Para la preselección por grupos de calidades de la fibra de alpaca se deberá tener en cuenta los criterios siguientes:

- Por la finura, expresada en micrones: seleccionado manual y visual de acuerdo al micronaje de la fibra, por personal calificado.
- Por la longitud, expresada en centímetros o milímetros: seleccionado manual y visual por el largo de la fibra, pudiéndose obtener fibra larga o corta, por personal calificado.
- Por el color, seleccionado manual y visual de las diferentes tonalidades de los colores básicos naturales, por personal calificado.

En la selección del vellón propiamente se basa en su contenido de calidades superiores, calidades inferiores, longitud y colores.
Alpaca baby.- Es el grupo de calidades de fibra de alpaca cuyo micronaje es igual o menor que 23 µm y su longitud mínima (promedio) es 65 mm.

Alpaca fleece.- Es el grupo de calidades de fibra de alpaca cuyo micronaje está comprendido entre 23,1 µm y 26,5 µm y su longitud mínima (promedio) es de 70 mm.

Alpaca medium fleece.- Es el grupo de calidades de fibra de alpaca cuyo micronaje está comprendido entre 26,6 µm y 29 µm y su longitud mínima (promedio) es de 70 mm.

Alpaca huarizo.- Es el grupo de calidades de fibra de alpaca cuyo micronaje está comprendido entre 29,1 µm y 31,5 µm y su longitud mínima (promedio) es de 70 mm.

Alpaca gruesa.- Es el grupo de calidades de fibra de alpaca cuyo micronaje es mayor que 31,5 µm y su longitud mínima (promedio) es de 70 mm.

Alpaca corta.- Es un grupo de calidades de fibra de alpaca cuya longitud es de 20 mm a 50 mm.

C) Lavado.

Materia Prima: Fibra Alpaca sucia

Producto: Fibra Alpaca lavada

Proceso húmedo que tiene como finalidad separar de las fibras la grasa, tierra, sales minerales y otras impurezas.

El proceso se realiza en una serie de bateas de remoho, accionadas mecánicamente con rastrillos automáticos que mueven continuamente la fibra. En la primera batea del tren de lavado se introduce la fibra a ser lavada con agua caliente, pasando a las siguientes bateas que contienen una solución de detergente industrial con diversas temperaturas, y por último en las bateas de enjuague. Luego
de la última batea, la fibra pasa a la fase de secado, que se realiza en una máquina con circulación de aire caliente.

Un tren de lavado o leviatán consta de un conjunto de bateas en serie para eliminar impurezas con la mayor velocidad posible. Por lo general son un conjunto de 4 o 5 cubas rectangulares con paredes y fondos perforados para que las impurezas caigan y se depositen en el fondo de la cuba, manteniendo limpio el lavadero.

D) Cardado/Peinado

Materia Prima: Fibra Alpaca lavada
Producto: Mecha cardada

El proceso de cardado tiene la función múltiple de continuar con el proceso de limpieza las impurezas vegetales o minerales, de desenredar progresivamente las mechas constituidas por fibras entrelazadas y aglomeradas para obtener fibras individuales y aisladas y de disponer regularmente las fibras aisladas en forma de un velo que será condensado bajo la forma de mecha continua (cinta de carda), que constituye el primer esbozo del futuro hilo.

En este proceso se utiliza una máquina formada por varios cilindros (abridor, tambor, trabajador, limpiador, doffer) de diversos diámetros que giran a distintas velocidades, accionadas por una correa sinfín. Estos cilindros están cubiertos por púas fijas ajustadas muy cerca las unas de las otras, casi en contacto tangencial, pero sin tocarse. La fibra pasa entre los cilindros, se separa totalmente por la acción combinada de las púas, lográndose una mezcla adecuada de fibras.

La operación se realiza en un juego de cardas sucesivas, con púas progresivamente menores. La última posee tramos sin púas donde se van juntando las fibras. Se obtiene una mecha cardada que va a las peinadoras. Esta mecha se caracteriza porque sus hebras son pesadas y están formadas por fibras cortas y desordenadas.
El principio del cardado se basa en:

- La relación de fuerzas centrífugas de las piezas en contacto: tambores, trabajadores, limpiadores.
- El sentido de rotación de estas piezas, uno en relación al otro: igual o sentido contrario.
- Sentido de orientación de los ganchos de dos revestimientos contrarios: simétrico o asimétrico.
- Reglaje de la distancias entre las generatrices de las piezas cilíndricas en rotación.

Materia prima: Mecha cardada

Producto: Tops

En el peinado la mecha cardada pasa a través de una serie de peines muy finos, mediante los cuales se paralelizan las fibras y se eliminan las cortas.

Una mecha no peinada contiene un número importante de fibras cortas y de impurezas de todas clases, que no permiten obtener un hilo fino liso y redondo.

El proceso consiste en hacer pasar el velo obtenido del cardado por una máquina que reúne varios de ellas en una cinta de fibra. En una segunda fase, se pasa la cinta por una máquina de estirar, que corrige las disgregaciones ocurridas al reunir los velos. Las fibras son peinadas hasta formar la mecha de fibra de alpaca peinada, bobina, conocida también como tops.

El hecho de efectuar o no el peinado de la fibra, da a lugar a tres procedimientos específicos de hilatura, obteniendo productos completamente diferentes:

- Hilatura de la fibra cardada: el hilo obtenido es suave al tacto y sirve para obtener tejidos destinados a ser batanados perchados (pañol y mantas).
- Hilatura de fibra peinada: es el peinado propiamente dicho.
• Hilatura semipeinada: presenta un hilo menos liso y más peludo que un hilo peinado.

Principio del peinado:

• Retener el manojo de fibras en un órgano de retención.
• Presentar uno de los extremos de las fibras, a la acción de un peine con el fin de eliminar todo lo que no ha sido retenido por la pinza.
• Retener la parte que acaba de ser peinada, y peinar el otro extremo, peinado de las colas de las mechas.
• Ensamblar y soldar el conjunto de diferentes manojos peinados, de cara a formar una cinta continua.

E) Hilatura

Materia Prima: tops

Producto: hilado

El hilado es un proceso que consiste en la transformación del top, en un hilo continuo cohesiónado y manejable, llamado hilado. Consiste en el estirado, la torsión y el plegado. La magnitud del estirado difiere según se trate de fibra cardada o peinada. La fibra cardada puede llegar a cuadruplicar su longitud original, mientras que para la fibra peinada el estirado puede llegar de 6-16 veces.

El top se puede recibir en forma de bumps o bobinas a los cuales se les extraen muestras para su control. Las distintas fibras se clasifican, según su finura y su largo, en distintas calidades. Estas fibras se preparan para la hilatura mediante múltiples pasajes por máquinas, que mediante doblajes y estiros van produciendo una mecha adecuada para hilar. Una vez obtenida la hebra deseada se enrollan en bobinas, y los hilos son librados de sus últimas imperfecciones.

El hilado es la fase final de la producción del hilo simple, el hilo terminado posee cualidades como:
• Numero bien determinado
• Regularidad
• Solidez y elasticidad necesarias y suficientes en vista a posterior uso.
• Presentación bajo forma práctica
• Limpieza.

El hilado se efectúa en continuas de hilar según el siguiente principio:

• Ultimo estirado de la mecha de preparación
• Torsión, destinada a transformar en hilo la mecha de preparación previamente estirada en el número deseado y proporcionar al hilo la solidez exigida.
• Enrollado del hilo producido bajo forma de bobina permitiendo así su almacenamiento en un volumen reducido, con la mayor longitud de hilo posible, de fácil desenrollado y manipulación.

F) Teñido

Materia Prima: hilado

Producto: hilado teñido

Analiza y explicado en el presente estudio.

G) Tejido

Término genérico (derivado del latín textilis que a su vez lo hace del termino texere, "tejer") hace referencia generalmente a y toda clase de telas fabricadas por medio de hilos o filamentos tejidas, hoy es todo aquel producto que resulta de una elaboración por medio de un proceso textil, ya sea partiendo de un hilo o fibra textil.

Las telas tejidas tienen un gran uso y el tejido en telar es uno de los métodos más antiguos de elaborar telas.
TIPOS DE TEJIDOS

1. Tejido plano
2. Tejido de punto

Tejido plano

El proceso mediante el cual se obtiene el tejido plano es el método más comúnmente utilizado en la industria textil. Los tejidos planos se emplean, a su vez, en la fabricación de una gran cantidad de productos industriales y de consumo. Este proceso se lleva a cabo en cualquiera de los distintos tipos de telares, en los cuales, en términos generales, se entrelazan hebras dispuestas a lo largo (urdinbre) con otras que van en ángulo recto a las primeras (trama) pasando por encima o por debajo de éstas. La urdimbre debe resistir las elevadas tensiones del telar y la abrasión de la lanzadera a medida que pasa de un lado a otro, de manera que los hilos de urdimbre son más fuertes, de mejor calidad y tienen mayor torsión. Los hilos de trama pueden ser más decorativos o con alguna función especial, como los hilos para perchado de baja torsión.

Este método de tejido constituye una operación en seco. Sin embargo, a fin de evitar que se rompa la hebra de la urdimbre como consecuencia de la fricción que se produce durante la operación en sí, con frecuencia es necesario agregar al procesamiento una etapa conocida como engomado, en la cual se puede generar una pequeña cantidad de agua residual.
Tejido de punto

El proceso mediante el cual se obtiene el tejido de punto o jersey constituye uno de los principales métodos en la fabricación textil. Prácticamente toda la línea de medias y calcetines está hecha con tejido de punto, así como una gran cantidad de piezas de tela, prendas de vestir, suéteres. Este proceso se lleva a cabo insertando una serie de lazos de una o más hebras con base a una serie de puntos conocidos y recurriendo a maquinaria sofisticada muy veloz. Aunque éste es un proceso completamente seco, se suele aplicar aceites a la hebra para lubricarla durante las puntadas. Para eliminar estos aceites del tejido se lo somete a procesos húmedos posteriores descargando los aceites.

La técnica del tejido punto no es tan antigua como la del telar. El tejido de punto fue un proceso manual hasta 1589, donde se inventó una máquina para el tejido de telas para calcetería.

Comparación entre un tejido plano y uno de punto: Ventajas y desventajas

Una de las ventajas que caracterizan a los tejidos de punto es que son más confortables, ya que poseen la particularidad de amoldarse al cuerpo debido a la elasticidad que otorga su estructura.

Los tejidos de punto poseen una apariencia más pulcra ya que no presentan arrugas, también la propiedad elástica de su estructura confiere una ventaja económica respecto a los patrones de diseño ya que otorga la posibilidad de unificación de partes (delantero espalda) y talles.

Las telas de punto poseen un encogimiento superior a las de tejido plano, hasta un 5 % frente a un 2 % en los tejidos planos. Siendo el tejido plano más estable en el uso y la conservación.

La velocidad de producción en máquinas de tejido de punto es mayor a la producida en un telar a lanzadera, aproximadamente cuatro veces más. Los cambios en la maquinaria son más rápidamente adaptables a los cambios de la moda en relación a los telares para tejido plano.
En tejido plano proporciona el máximo cubrimiento, a comparación del tejido punto que es poroso, con espacios más abiertos entre los hilos.

En cuanto a la versatilidad de tejido, en ambos casos es muy amplio. En el tejido plano da telas delgadas a muy pesadas, en muchas texturas y diseños diferentes. En el tejido punto las telas varían de transparentes a pesadas, tejidos lisos y de fantasía.

Por último y una ventaja única en el tejido de punto es que tiene la posibilidad de realizar prendas completas presidiendo de los procesos de tizado encimado corte y confección.

H) Comercialización

Para un mercado nacional e internacional elite.
Anexo 3. Productos Auxiliares

Con el fin de un evaluar qué tipo de auxiliares son los más usados en la tintorería de textiles, el impacto que tienen sobre el medio ambiente, su influencia en el éxito del teñido de productos textiles, su procedencia y costo, se seleccionó los productos auxiliares más relevantes para la investigación, y son:

A. Detergente

El proceso de lavado es el tratamiento previo a la tintura, implica el uso de una solución acuosa de un tenso activo para eliminar de la fibra sustancias extrañas fijadas a la fibra como grasas, aceites, enzimas, tierra. Este detergente también deberá poseer propiedades humectantes permitiendo que por quiebre de la tensión superficial del agua la suciedad sea fácilmente removida del material para la fase líquida, emulsionantes para remover partículas líquidas y dispersantes de las sólidas.

“Detergentes aniónicos imparten cargas negativas a la sustancia suspendida repeliéndose de la fibra y facilitando su remoción”

“Detergente”

Características:

Es un excelente y económico tenso activo que posee propiedades de humectación, emulsificación, dispersión y deferencia

Adecuado para ser usados a bajas o altas temperaturas.

Propiedades:

- Constitución química: Mezcla de éteres poliglicólicos con componentes alifáticos.
- Carácter iónico: No ionógeno
- Presentación: Líquido transparente incoloro.
Ph en solución al 1%: aprox. 6
Densidad: 1.020 – 1.050 g/ml
Estabilidad: estable en agua dura, acida, básica y en electrolitos. Se puede usar junto con productos aniónicos, catiónicos y no iónicos.
Almacenaje: estable a 20°C en envases cerrados por 1 año.

Campos de aplicación:
Indicado para el lavado de alpaca, alpaca/lana, eliminación de grasa y aceite.
En el desmanchado, lavado de hilados de lana, lavado de fibras sintéticas y lavado posterior de tinturas.
Para el lavado reductor una vez realizada una tintura a fin de remover el exceso de colorante no fijado.

“WOB- Detergente líquido Estándar de Referencia”

Características:
Los detergentes AATCC estándares de referencia son manufacturados para cumplir con las especificaciones de AATTC y pueden ser utilizados en una variedad de métodos de prueba de la marca. Estos detergentes no contienen fosfatos. Esto debido a que los detergentes para uso doméstico varían según ubicación geográfica, el uso de detergentes estándares permitirá que los resultados de las pruebas puedan ser comparados entre laboratorios del mundo sin que el detergente en sí, sea una variable en el proceso.

Estos detergentes también vienen en presentaciones con o sin abrillantador óptico ya que este también puede interferir con la evaluación del cambio de color.

El detergente utilizado en la presente investigación es: 2003 Estándar de referencia de detergente líquido sin abrillantador óptico.
B. Igualantes o Retardantes

Los igualantes o agentes de igualación, son productos cuya función específica es la de uniformar el coeficiente de agotamiento de los colorantes. Estos tienen diferentes sustantividad y capacidad de migración sobre las fibras. El agente de igualación trabaja de diferentes formas según su naturaleza química, esto es: por afinidad con la fibra o por afinidad con el colorante. En el primer caso permite incrementar la movilidad de las moléculas del colorante sobre la fibra despejando temporal o permanentemente los sitios reactivos en las mismas, tienen mismo carácter iónico que el colorante entra en competencia. En el segundo caso, el igualante actúa retardando la velocidad de agotamiento de los colorantes formando complejos temporarios inestables que se rompen con el aumento de temperatura.

“Albegal A”

Características:

Afinidad con el colorante y la fibra. Excelente acción igualadora en amplio rango de pH. Evita tinturas picadas. Excelente poder de dispersión.

Propiedades:

- Constitución química: alquil amina poliglicon éter sulfato
- Carácter iónico: anfótero.
- Presentación: líquido amarillento de baja viscosidad.
- Ph en solución al 5%: aprox. 7
- Gravedad específica a 20°C: aprox 1.1
- Estabilidad: estable en agua dura, acida, básica y en electrolitos. Se puede usar junto con productos aniónicos, catiónicos y no iónicos.
- Almacenaje: estable a 20°C en envases cerrados por 1 año.

Campos de aplicación:
Agente de igualación de múltiples aplicaciones especialmente para colorantes de complejo metálico.

Tintura de lana por procedimientos de agotamiento en baños cortos.

Dispersante y agente de igualación en la tintura lana/poliéster.

Inhibidor de precipitaciones en la tintura con colorantes aniónicos y catiónicos en baño único.

Estampación de fibras poliamídicas con colorantes de complejo metálico.

Características:

- Débil afinidad para el colorante
- Acción igualadora en un amplio intervalo de pH.
- Ausencia de efecto “DRAINING” en la tintura con colorantes de complejo metálico del tipo 1:2

C. Dadores de pH

Entre otros dadores de pH utilizados en la investigación para pruebas preliminares, se tiene:

“Amoniaco”

Características

Tiene por formula NH₃, peso molecular 17 se encuentra en el comercio en forma de solución acuosa. El amoniaco es una combinación fuertemente alcalina, cáustica, de olor característico y fácilmente volátil, por este motivo las bombonas deben estar bien cerradas y almacenadas en locales frescos. No ataca a las fibras vegetales, y solamente en solución concentrada a las fibras de origen animal, aunque siempre con menos energía que la sosa y potasa cáusticas.

Propiedades
Presentación: líquido incoloro de olor penetrante que exita el lagrimeo

Densidad: 0.60g/ml

Peso específico de 0.91 que corresponde a una riqueza de 25% en amoníaco

Se solidifica con facilidad

Un litro de agua absorbe, a 0 °C, 10.5 lt de NH₃ gaseoso. El (NH₄) OH (hidróxido amónico) es la solución acuosa de gas; a 15 °C contiene hasta 35% de amoníaco.

Campos de aplicación:

- Es un buen disolvente
- Se emplea como refrigerante para fabricar hielo.
- Tiene aplicaciones muy importantes en la industria de los colorantes sintéticos, para obtener frío artificial
- En tintorería, como álcali suave para el lavado de la lana y seda, para eliminar manchas de grasa y aceite de los tejidos; para la neutralización de los baños ácidos; para rebajar o neutralizar los baños de blanqueo de agua oxigenada y peróxido de sodio; para la fijación de algunos óxidos metálicos sobre fibra; como aditamento a los baños de tintura para la obtención de determinados matices por el procedimiento de baño único; para la preparación de sales y soluciones amoniaca; para precipitar las sales de calcio y magnesio (eventualmente junto con la sosa); donde no sea posible el empleo de sosa cáustica y pueda perjudicar el exceso de sosa.

“Ácido Cítrico”

Características

Su fórmula química es C₆H₈O₇. El nombre IUPAC del ácido cítrico es ácido 2-hidroxi-1,2,3-propanotricarboxílico. La acidez del ácido cítrico es debida a los
tres grupos carboxilos -COOH que pueden perder un protón en las soluciones. Si sucede esto, se produce un ion citrato. Los citratos son unos buenos controladores del pH de soluciones ácidas. Los iones citrato forman sales con muchos iones metálicos. El ácido cítrico es un polvo cristalino blanco. Puede existir en una forma anhidra (sin agua), o como monohidrato que contenga una molécula de agua por cada molécula de ácido cítrico. La forma anhidra se cristaliza en el agua caliente, mientras que la forma monohidrato cuando el ácido cítrico se cristaliza en agua fría. El monohidrato se puede convertir a la forma anhidra calentándolo sobre 74 °C.

Químicamente, el ácido cítrico comparte las características de otros ácidos carboxílicos. Cuando se calienta a más de 175 °C, se descompone produciendo dióxido de carbono y agua y luego aparentemente desaparece.

Propiedades

- Formula: C6H8O7
- Peso molecular: 92.13 g/mol
- Apariencia: cristales blancos
- Solubilidad (gr./100 ml a 25°C): en agua: 162, en etanol: 59, en éter : 0.7
- Ensayo de pureza 99.5% mínimo
- Humedad 0.5 % máximo
- Metales pesados Menos de 10 ppm
- Arsénico Menos de 3 ppm
- Ceniza Menos de 0.05%
- Punto de ebullición (4) 153 °C
- Constante de Ionización (4) 8.2 x 10⁻⁴
- Calor de disolución (5) 6,4 cal
- Calor de combustión (5) 474,6 cal

Campos de aplicación:
Su uso primario es como acidulante

El ácido cítrico es uno de los aditivos más utilizados por la industria alimentaria.

Es un buen conservante y antioxidante natural que se añade industrialmente como aditivo en el envasado de muchos alimentos como las conservas de vegetales enlatadas.

En bioquímica aparece como un metabolito intermediario en el ciclo de los ácidos tricarboxílicos, proceso realizado por la mayoría de los seres vivos.

Ideal también para utilizarse en la industria de las bebidas

Imparte un sabor agrio y refrescante para la industria farmacéutica

“Carbonato De Sodio”

Características:

El carbonato de sodio o carbonato sódico es una sal blanca y translúcida de fórmula química Na₂CO₃, usada entre otras cosas en la fabricación de jabón, vidrio y tintes. Es conocido comúnmente como barrilla, natrón, sosa Solway, sosa Solvay, sosa Ash, ceniza de soda y sosa (no se la confunda con la soda cáustica).

Propiedades:

- Nombre químico: Carbonato de Sodio.
- Nombres comunes: Ceniza de soda, Soda Ash
- Formula química: Na₂CO₃
- Toxicológicas: irritación de la piel y ojos
- Apariencia: polvo blanco inodoro
- Punto de fusión: 851 °C
- Masa molecular: 106 g/mol
Estabilidad: es estable siempre y cuando no se lo junte con metales alcalinotérreos, aluminio, compuestos orgánicos nitrogenados, óxidos no metálicos, ácido sulfúrico concentrado, óxidos del fósforo.

Campos de aplicación:

➢ El carbonato de sodio es usado para tostar (calentar bajo una ráfaga de aire) el cromo y otros extractos y disminuye el contenido de azufre y fósforo de la fundición y del acero.

➢ En la fabricación de detergentes,

➢ Importancia en el empleo del carbonato de sodio en aquellos procesos en los que hay que regular el pH de diferentes soluciones, nos referimos al tratamiento de aguas de la industria, así como en los procesos de flotación. Cerámica, jabones, limpiadores, ablandador de aguas duras, refinación de petróleos, producción de aluminio, textiles, pulpa y papel.

➢ Procesamiento metalúrgico

➢ Preparación de productos farmacéuticos

D. Agentes Dispersantes

Se denominan dispersantes a aquellos auxiliares textiles que facilitan la dispersión de las sustancias sólidas de cualquier tipo, en los baños de teñido.

“Dispersante”

Características:

Agente dispersante para la tintura de poliéster/lana con colorantes dispersos, ácidos o complejo metálicos 1:2 o las correspondientes mezclas de colorantes. Baja formación de espuma.
Propiedades:

- Composición químico: producto de condensación con enlaces de metileno.
- Carácter iónico: aniónico
- Presentación: polvo amarillento.
- pH en solución acuosa al 1%: 8.5 – 9.5
- Dilución: mezclar con agua fría o tibia.
- Estabilidad: estable a ácidos, álcalis y al agua dura.

Campos de aplicación:

- Auxiliar utilizado para dispersar los colorantes en el baño de preparación antes de la tintura.
- Dispersante para lana y poliéster, y sus mezclas.
- En la tintura de fibras celulósicas con colorantes a la tina.
- Para la remoción parcial de colorantes catiónicos en fibras acrílicas.

E. Agentes suavizantes

Los productos auxiliares de acabado con propiedades suavizantes constituyen uno de los grupos más numerosos, por la gran variedad de compuestos que lo integran. Los suavizantes se utilizan por dos causas: la primera es por la necesidad de aumentar el confort de ciertas fibras que naturalmente producen escozor o irritación en el contacto con la piel humana. La segunda causa es cuando por motivos de procesamiento, se altera la fibra ya sea por extracción de las grasas naturales o por la incorporación de productos de acabado de tacto áspero.

En ambos casos se soluciona estos inconvenientes utilizando productos que van desde ésteres grasos sulfonados hasta polímeros de siliconas (ya sea como aceites o como sus macro o micro emulsiones), pasando por polímeros etilénicos, acrílicos y uretánicos de mano blanda.

“Ácido Graso”
Características:

Es una emulsión de Silicona modificada hidrofílica, conteniendo oxido copolímero de polisiloxano-polialquileno cuaternario, 5-10% alcohol graso etoxilado, 1-5% butil diglicol, que brinda una excelente mano suave y volumen al hilado.

Propiedades:

- Composición química: emulsión acuosa de silicona modificada de óxido de copolímero de polisiloxano Polialquileno Cuaternario
- Carácter Iónico:
- Presentación: líquido incoloro, opalescente.

Campos de aplicación:

- Auxiliar de textil.
- Suavizante al tacto, apropiado para fibras naturales como sintéticas.
- Se obtiene particularmente buenos resultados sobre prendas de felpa.
- Excelente estabilidad al cizallamiento y a procesos de gran turbulencia.

F. Agentes Para Desmontado De Tinturas

Los auxiliares para el desmontado de tintura, son ampliamente utilizados para la corrección de partidas defectuosas de tintorería. Los productos adecuados para efectuar esta corrección, está en función de los colorantes y fibras involucrados.

“Sulfato de Sodio”

Características:

Sal inorgánica, cristalina, blanca e inodora cuando esta en forma anhidra, y se conoce como sal Glauber cuando esta en forma deca-hidratada con fórmula: Na2SO4.10 H2O
Tiene buena solubilidad en el agua y mala solubilidad en la mayoría de los disolventes orgánicos con excepción de la glicerina. El sulfato de sodio decahidratado (Na₂SO₄.10H₂O) se disuelve en el agua bajo enfriamiento de la solución por efecto entrópico. La sal deshidratada

Propiedades:

- Fórmula: Na₂SO₄
- Presentación: polvo blanco
- Olor inodoro
- Sabor picante, salino
- Gravedad específica 2.671
- pH (5 % P/P a 25°C) 8+1.5
- Masa molar: 142,04 g/mol
- Punto de fusión: 884 °C (Na₂SO₄); 32 °C (Na₂SO₄.10H₂O)
- Densidad: 2,70 g/ml
- Solubilidad: Na₂SO₄ en 100 g de agua a 0 °C 4,76 g; a 100 °C 42,7 g

Campos de aplicación:

- El sulfato de sodio anhidro tiene propiedades higroscópicas y por lo tanto es utilizado como desecante en el laboratorio o la industria química.
- Se utiliza en la fabricación de la celulosa y como aditivo en la fabricación del vidrio.
- También añade a los detergentes en polvo para mejorar su comportamiento mecánico y donde puede representar una parte importante del peso total.
- Este se utiliza como desinfectante pero este causa irritación después de un pequeño periodo de tiempo.
Tiene utilidad en toxicología como acelerador del tránsito intestinal (catártico), junto con la administración de carbón activado, para disminuir la absorción de intestinal de tóxicos ingeridos.

“Reductor”

Propiedades:

- Carácter Iónico: Aniónico
- Presentación: polvo blanco.

Campos de aplicación:

- Efectivo como blanqueador para lana y sus mezclas.
- Preparaciones para blanquear usadas en la industria textil.
- Productos químicos utilizado para la impregnación de recubrimiento de unión o, tratamientos reductores de blanqueo y limpieza reductiva de textiles, pieles, textiles no tejidos y tejidos para su uso en la fabricación de tejidos, pieles, textiles no tejidos y textiles.
- Preparaciones para blanquear y otras sustancias para la colada; para limpiar, pulir, desengrasar y raspar; jabones; perfumería, aceites esenciales, cosméticos, lociones para el cabello; dentífricos.

G. Agentes Para Lavado Reductor

Los productos auxiliares para el lavado reductor se emplean principalmente una vez realizada una tintura a fin de remover el exceso de colorante no fijado. Bajo esta denominación se agrupa a los productos que se emplean para el lavado reductor de la fibra poliéster teñida a alta temperatura, en la fase de enfriamiento en sustitución del hidrosulfito de sodio. Se pueden aplicar para el lavado reductor en medio ácido de otras fibras si los colorantes no son sensibles a la reducción.

Mencionados anteriormente:
“Detergente”
“Dispersante”
“Reductor”

H. Agentes Protectores de Fibra

Agente protector de la fibra de lana y de sus mezclas que reduce el "setting" permanente durante el teñido.

“Miralan Q”

Características:

Lubricante y antifieltrante. Mejora la calidad de la lana en todas las etapas de procesamiento

Campos de aplicación:

- Lubricación de efecto especial de artículos por piezas
- Efecto Anti-ajuste para todas las mercancías de lana
- Efecto anti-fieltr o para todas las mercancías de lana
- Promueve la estabilidad dimensional de los productos de fibra
- Promueve la resistencia a la abrasión de los productos de lana (especialmente piezas)
“Tartrato Ácido Potásico”

Características:

Es una sal ácida del potasio del ácido tartárico, un ácido carboxílico, también conocido como crémor tártaro, bitartrato de potasio. Tiene como fórmula: KC₄H₆O₆

Propiedades:

- Nombre Químico: Bitartrato Potásico L, Tartrato ácido de potasio, Tartrato Monopotásico, Hidrógenotartrato potásico, Sal monopotásica del Ácido Tartárico
- Presentación: polvo blanco cristalino
- Densidad: 1.05 kg/m3; 0.00105 g/cm3
- Masa Molar: 188.177 g/mol
- Índice de Refracción: 1.511
- Calor Específico: (20º C): 0.288 cal/mg/ºC
- Solubilidad en agua: a 10º C: 4g/1000 ml. a 100º C: 61g/1000 ml.
- Calor de Combustión: -275.1 Kcal/mol
Sistema de cristalización: prismas con forma de diamantes

Campos de aplicación:

- En los alimentos, el bitartrato de potasio es utilizado para:
 - La estabilización de las claras de huevo, aumentando su tolerancia al calor y volumen;
 - Prevenir de cristalización a los jarabes de azúcar;
 - Reducción de la decoloración de verduras hervidas;
 - Frecuente combinación con bicarbonato de sodio (el cual necesita un ingrediente ácido para activarlo) en las formulaciones de levadura química o polvo de hornear.
 - Se suele utilizar en combinación con cloruro de potasio en sustitutos de las sales libres de sodio.
 - Glaseado en las casas de pan de jengibre.
 - Una sal ácida similar, el pirofosfato ácido de sodio, se puede confundir con la crema de tártaro, debido a su función común en forma de polvo para hornear.

- Uso doméstico
 - El bitartrato de potasio puede utilizarse con vinagre blanco para hacer un agente de limpieza parecido a una pasta. Esta mezcla a veces es por error hecha con vinagre y bicarbonato de sodio, los cuales de hecho reaccionan para neutralizar entre sí, creando dióxido de carbono y una solución de acetato de sodio.

- Química
 - El tartrato ácido de potasio, según el NIST, es utilizado como patrón de referencia principal para un tampón químico. Usando un exceso de sal en agua, una solución saturada es creada con un pH de 3,557 a 25 °C. Tras la disolución en agua, el bitartrato de potasio se separa en tartrato
ácido, tartrato, e iones de potasio. Por lo tanto, una solución saturada crea un buffer de pH estándar. Antes de su uso como una norma, se recomienda que la solución deba ser filtrada o decantada entre los 22°C y 28°C.
Anexo 4. Equipos e Instrumentos

- **Titulador madejera de laboratorio**

 Según el título del hilado, se calcula el número de vueltas necesario para obtener madejitas de 10 gr, para trabajar en escala laboratorio.

 La fórmula es la siguiente:

 \[
 N° \text{ de vueltas} = \frac{\text{gramos x metro}}{\text{N° de cabos}}
 \]

 Es decir, en nuestro caso, se trabajó con hilado título 2/16. Aplicando la formula, el número de vueltas a dar es 80, para obtener madejitas de 10 gr aproximadamente.

- **Maquina Teñidora de Laboratorio**

 Las Maquina para teñido en laboratorio, cuentan con un programador, calentamiento a través de lámparas de luz infrarroja, enfriamiento de agua/ventilador o ambos, cuenta con un sensor de temperatura, el número de posiciones varia de 12 a 24 tubos con un volumen 250ml.
• **Fricciónmetro**

Instrumento manual para determinar la solidez del color al frote seco y húmedo, cuenta con un contador de lectura digital. El instrumento se suministra con superficies de roce de diámetro 1,6 cm y 3,2 cm y con dos pesos de 9 N y 22 N.

• **Escala de Grises**
Es una escala que consta de pares de muestras de gris, donde los pares representan diferencias progresivas en color o contraste correspondiente a grados numéricos de estabilidad de color. Se tiene: Escala de Grises Cambio de color y Escala de Grises Transferencia de color (Sangrado o Manchado)

Escala de grises para transferencia de color Escala Cromática de transferencia de color 9-Grados.

- **Dinamómetro**

 Instrumento que mide las fuerzas, los cuales se basan en la elongación o estiramiento del hilo que marca el rango de medición. Un dinamómetro está integrado por un muelle, el cual se encuentra contenido en un cilindro, también posee dos ganchos o anillas en cada uno de los extremos del dinamómetro. El rango o escala de medición se marca en unidades de fuerzas. El funcionamiento consiste en enganchar pesos o desplegar una fuerza sobre el gancho exterior, el cursor de ese extremo se mueve sobre la escala exterior mostrando el valor de la fuerza.
• **Cabina de Luz, Spectrolight**

 Equipa utilizado para la evaluación visual de muestras referente a su color bajo un iluminante estandarizado. Sirve para la comparación de tonalidad, claridad, pureza y metamerismo de un color.

 Por lo general, cuentan con cuatro (o cinco) fuentes iluminantes normalizadas:

 - D65 - Luz del día artificial. Iluminante con temperatura de color 6500 K
 - TL84 - Luz de tienda. Iluminante fluorescente fría temperatura 4000 K
 - A - Luz Residencial. Iluminante incandescente con temperatura 2856 K
 - UV - Iluminante ultravioleta para evaluación de abrillantadores ópticos

 Las cabinas de luz también cuentan con un contador de horas para el control de la vida útil de cada lámpara individualmente.

 El iluminante ultravioleta puede ser prendido solo o simultáneamente con el iluminante luz del día.

 Las condiciones para una correcta evaluación de color son:

 - El ángulo de posición de la muestra a 45° de nuestra visión.
 - En la cabina solo debe haber el color a evaluar, ya que los colores circundantes influencian la percepción.
Data color, espectrofotómetro

Equipo DataColor 600

Características:

- Estabilidad superior en tonos oscuros
- Tecnología espectral SP200 de última generación
- Zoom automático de lentes y puerto especular (SCI/SCE)
- Control UV automático para la medición de materiales fluorescentes
- Diferentes áreas de visión con reconocimiento automático de aperturas
- Luces de estatus por LED
- Mediciones por transmitancia – Total, Directa y Turbidez (650)
Torsiómetro

Equipo utilizado para determinar el sentido de la torsión de los hilados, la cantidad de torsión en términos de las vueltas por unidad de longitud y el cambio de longitud del material destorcido de hilados o filamentos sencillos, hilos retorcidos o hilos cableados. Una muestra es destorcida y después re-torcida en la dirección opuesta hasta que vuelva a su tamaño original, direcciones S y Z de torsión.
Anexo 5. Estándares de calidad según normas ISO y AATCC

Normas Técnicas:

Las normas están establecidas técnicas por son consenso de documentos las partes interesadas y aprobados por un organismo reconocido, que establece reglas, directivas o características para ciertas actividades o sus resultados, con el fin de conseguir un grado óptimo de calidad.

CERTIFICACIONES Y NORMATIVAS

La importancia de los certificados y los marcajes internacionales que se exigen en los textiles técnicos es primordial. Pensemos que están destinados, a protegernos, y a proporcionarnos una vida más cómoda y agradable.

Normas Técnicas

Las Normas Técnicas Internacionales más usadas:

• **AATCC**: American Association of Textile Chemists and Colorists (Generalmente Ensayos Químicos)
• **ISO**: International Organization for Standardization (Ensayos Físicos y Químicos)
• **ASTM**: American Society for Testing Materials (Generalmente Ensayos Físicos)

Norma AATCC

La Asociación es reconocida internacionalmente por sus métodos de ensayo estandarizados para medir y evaluar las características del teñido, fibras tratadas químicamente y telas, tales como solidez del color a la luz, lavado, planchado duradero, desprendimiento de suciedad, encogimiento, resistencia al agua y las condiciones a las que muchos otros textiles pueden ser sometidos.
Las normas internacionales también controlan y definen la calidad de los productos textiles, ya sea fibra, hilo, tela o producto terminado. Los métodos de prueba estandarizados por el AATCC son los que permiten certificar la calidad de un producto textil en el mercado internacional. Los tintes utilizados sobre la fibra deben someterse a las pruebas de solidez pertinentes según el uso que le será dado al textil.

La solidez de una tintura es la resistencia al cambio en cualquiera de sus características del color, a la transferencia de sus colorantes a los materiales adyacentes, o ambos, como resultado de la exposición del material a cualquier ambiente que pudiera ser encontrado durante el proceso, la prueba, el almacenaje o el uso del material. Pueden existir tinturas sólidas a la luz, pero sin solidez al frote, o sólidas al lavado pero con poca solidez a la luz y así sucesivamente.

Aunque muchas especies vegetales transfieren color a las fibras textiles, no todos los colorantes naturales presentan la misma resistencia y durabilidad. Para conocer el nivel de fijación de un tinte es necesario realizar pruebas que pongan en evidencia su solidez.

Factores que afectan las solideces

- Tipo de Colorantes
- Fibra
- Tratados previos y posteriores
- Temperatura y tiempo de fijación

Clases de solideces

Las pruebas de solidez y los métodos más comunes usados en la industria textil son:

- Solidez del color al frote: seco y húmedo
 AATCC 8
Solidez del color al lavado en casa y comercial: Pruebas aceleradas
AATCC 61
AATCC 61-2010
ISO 105-C06

Solidez del color a la luz
AATCC 16
AATCC 16-2004
ISO 105 E02

Solidez del color a la transpiración: ácida o alcalina
AATCC 15
AATCC 15-2009
ISO 105 E04

Entre otras, algunas de ellas:

Solidez del color al Non Chlorine Bleach: Pruebas aceleradas AATCC 172
AATCC 172-2003

Solidez del color al agua de mar
AATCC 106
AATCC 106-2009
ISO 105 E02

Solidez del color al agua
AATCC 107
AATCC 107-2009
ISO 105 E01

Solidez del color a la luz más transpiración: 20 AFU
AATCC 125
AATCC 125-2009
• Solidez del color al agua clorada de piscinas
 AATCC 162
 AATCC 162-2009
 ISO 105 E03
• Solidez del color al calor: Hot pressing,
 AATCC 133-2009 dry or wet
 ISO 105-X11
• Determinación del pH del extracto acuoso de los textiles
• Cambio dimensional en los lavados domésticos de los tejidos planos y de
 punto (1-3 / lavadas)
• Resistencia a la tracción de hilo
• Resistencia al Pilling en tejidos

Entre las solideces que hacen referencia la mayoría de fuentes disponibles
sobre teñido artesanal con tintes naturales son: la solidez al frote, la solidez del color
al lavado y la solidez a la luz. Los resultados de estas pruebas, dictarán la utilización
que puede darse al textil teñido con un colorante natural específico.

Es importante resaltar que todas estas pruebas de solidez según norma son
aplicadas para la fibra de alpaca con un rango de tolerancia mayor.
Anexo 6. Lecturas de fuerza color obtenidas con el software de Datacolor para las curvas de subida y agotamiento para cada colorante.

Para colorante GLOBE YELLOW 7% al 2%:

Tabla. Resultados Fuerza en la curva de subida para el colorante GLOBE YELLOW 7%

<table>
<thead>
<tr>
<th>N°</th>
<th>Muestra de Calibración</th>
<th>Nombre</th>
<th>Calibración</th>
<th>Conc</th>
<th>Fuerza</th>
<th>dE</th>
<th>Usada Cond. Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yellow s 50</td>
<td></td>
<td></td>
<td>50.00</td>
<td>100.00</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>2</td>
<td>yellow s 60</td>
<td></td>
<td></td>
<td>60.00</td>
<td>149.95</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>3</td>
<td>yellow s 70</td>
<td></td>
<td></td>
<td>70.00</td>
<td>135.35</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>4</td>
<td>yellow s 80</td>
<td></td>
<td></td>
<td>80.00</td>
<td>217.27</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>5</td>
<td>yellow s 90</td>
<td></td>
<td></td>
<td>90.00</td>
<td>279.83</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>6</td>
<td>yellow s 98</td>
<td></td>
<td></td>
<td>98.00</td>
<td>279.97</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>7</td>
<td>yellow s 98.1</td>
<td></td>
<td></td>
<td>98.10</td>
<td>282.12</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>8</td>
<td>yellow s 98.2</td>
<td></td>
<td></td>
<td>98.20</td>
<td>294.07</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>9</td>
<td>yellow s 98.3</td>
<td></td>
<td></td>
<td>98.30</td>
<td>295.26</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>10</td>
<td>yellow s 98.4</td>
<td></td>
<td></td>
<td>98.40</td>
<td>299.66</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>11</td>
<td>yellow s 98.5</td>
<td></td>
<td></td>
<td>98.50</td>
<td>313.81</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>12</td>
<td>yellow s 98.6</td>
<td></td>
<td></td>
<td>98.60</td>
<td>307.04</td>
<td>0.00</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Fuente: Lecturas Datacolor
Gráfico. Curva de Reflectancia para la curva de subida de colorante Globe Yellow 7%.

Fuente: Lecturas de DataColor.

Grafico. Curva de Absorbancia para la curva de subida de colorante Globe Yellow 7%.

Fuente: Lecturas de DataColor.
Tabla. Resultados Fuerza en la curva de agotamiento para el colorante GLOBE YELLOW 7%

<table>
<thead>
<tr>
<th>Muestra de Calibración</th>
<th>Calibración</th>
<th>Conc</th>
<th>Fuerza</th>
<th>dE</th>
<th>Usada Cond. Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 YELLOW RE 50</td>
<td></td>
<td>60.00</td>
<td>100.00</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>2 YELLOW RE 60</td>
<td></td>
<td>60.00</td>
<td>104.62</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>3 YELLOW RE 70</td>
<td></td>
<td>70.00</td>
<td>87.10</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>4 YELLOW RE 80</td>
<td></td>
<td>80.00</td>
<td>48.08</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>5 YELLOW RE 90</td>
<td></td>
<td>90.00</td>
<td>41.13</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>6 YELLOW RE 95</td>
<td></td>
<td>95.00</td>
<td>39.93</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>7 YELLOW RE 98.1</td>
<td></td>
<td>98.10</td>
<td>34.57</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>8 YELLOW RE 98.2</td>
<td></td>
<td>98.20</td>
<td>54.36</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>9 YELLOW RE 98.3</td>
<td></td>
<td>98.30</td>
<td>32.82</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>10 YELLOW RE 98.4</td>
<td></td>
<td>98.40</td>
<td>30.40</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>11 YELLOW RE 98.5</td>
<td></td>
<td>98.50</td>
<td>20.05</td>
<td>0.00</td>
<td>Sí</td>
</tr>
<tr>
<td>12 YELLOW RE 98.6</td>
<td></td>
<td>98.60</td>
<td>25.53</td>
<td>0.00</td>
<td>Sí</td>
</tr>
</tbody>
</table>

Fuente: Lecturas Datacolor
Grafico. Curva de Reflectancia para la curva de agotamiento de colorante Globe Yellow 7%.

Fuente: Lecturas de DataColor.

Grafico 15. Curva de Absorbancia para la curva de agotamiento de colorante Globe Yellow 7%.

Fuente: Lecturas de DataColor.
Para colorante GLOBEBIX EXL al 2%:

Tabla. Resultados Fuerza en la curva de subida para el colorante GLOBEBIX

<table>
<thead>
<tr>
<th>Nombre de Calibración</th>
<th>Conc</th>
<th>Fuerza</th>
<th>dE</th>
<th>Usado Cond. Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR S 50</td>
<td>50.00</td>
<td>100.00</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 60</td>
<td>60.00</td>
<td>83.80</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 70</td>
<td>70.00</td>
<td>64.37</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 80</td>
<td>80.00</td>
<td>51.12</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 90</td>
<td>90.00</td>
<td>50.06</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 98</td>
<td>98.00</td>
<td>31.43</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 98.1</td>
<td>98.10</td>
<td>30.73</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 98.2</td>
<td>98.20</td>
<td>20.90</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 98.3</td>
<td>98.30</td>
<td>20.73</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 98.4</td>
<td>98.40</td>
<td>20.05</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 98.5</td>
<td>98.50</td>
<td>12.77</td>
<td>0.00</td>
<td>Si</td>
</tr>
<tr>
<td>CUR S 98.6</td>
<td>98.60</td>
<td>1.28</td>
<td>0.00</td>
<td>Si</td>
</tr>
</tbody>
</table>

EXL Fuente: Lecturas Datacolor
Grafico. Curva de Reflectancia para la curva de subida de colorante Globebix EXL.

Fuente: Lecturas de DataColor.

Grafico. Curva de Absorbancia para la curva de subida de colorante Globebix EXL.

Fuente: Lecturas de DataColor.
Tabla. Resultados Fuerza en la curva de agotamiento para el colorante GLOBEBIX EXL

<table>
<thead>
<tr>
<th>Nombre Partida Substrato</th>
<th>Proceso Tintura Calibración</th>
<th>Instrumento</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPACA 221 SU 2/16</td>
<td>AGOTAMIENTO 98°F</td>
<td>600, 8803693,d/8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra de Calibración</th>
<th>Nombre</th>
<th>Calibración</th>
<th>dE</th>
<th>Usada Cond. Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Correct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CUR RE 60</td>
<td>50.00</td>
<td>100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>CUR RE 60</td>
<td>50.00</td>
<td>93.80</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>CUR RE 70</td>
<td>70.00</td>
<td>64.37</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>CUR RE 80</td>
<td>80.00</td>
<td>56.21</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>CUR RE 90</td>
<td>90.00</td>
<td>51.12</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>CUR RE 98</td>
<td>98.00</td>
<td>50.05</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>CUR RE 98.1</td>
<td>98.10</td>
<td>30.73</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>CUR RE 98.2</td>
<td>98.20</td>
<td>11.97</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>CUR RE 98.3</td>
<td>98.30</td>
<td>10.67</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>CUR RE 98.4</td>
<td>98.40</td>
<td>4.28</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>CUR RE 98.5</td>
<td>98.50</td>
<td>1.28</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>CUR RE 98.6</td>
<td>98.60</td>
<td>0.23</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fuente: Lecturas Datacolor
Grafico. Curva de Reflectancia para la curva de agotamiento de colorante Globebix EXL.

Fuente: Lecturas de DataColor.

Grafico. Curva de Absorbancia para la curva de agotamiento de colorante Globebix EXL.

Fuente: Lecturas de DataColor.
Para colorante CARMIN LIQUIDO K3 al 2%:

Tabla. Resultados Fuerza en la curva de subida para el colorante CARMIN LIQUIDO K3

<table>
<thead>
<tr>
<th>Muestra de Calibración</th>
<th>Calibración Nombre</th>
<th>Calibración Conc</th>
<th>Calibración Fuerza</th>
<th>Calibración de</th>
<th>Usada</th>
<th>Cond. Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CARM S 50</td>
<td></td>
<td>100.00</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>2 CARM S 60</td>
<td></td>
<td>142.75</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>3 CARM S 70</td>
<td></td>
<td>158.26</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>4 CARM S 80</td>
<td></td>
<td>212.94</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>5 CARM S 90</td>
<td></td>
<td>419.12</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>6 CARM S 98</td>
<td></td>
<td>556.75</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>7 CARM S 99.1</td>
<td></td>
<td>1131.68</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>8 CARM S 99.2</td>
<td></td>
<td>1242.63</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>9 CARM S 99.3</td>
<td></td>
<td>1263.04</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>10 CARM S 99.4</td>
<td></td>
<td>1311.32</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>11 CARM S 99.5</td>
<td></td>
<td>1316.66</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
<tr>
<td>12 CARM S 99.6</td>
<td></td>
<td>1418.64</td>
<td>0.00</td>
<td>SI</td>
<td>Unfinished</td>
<td>I SAV</td>
</tr>
</tbody>
</table>

Fuente: Lecturas Datacolor

Fuente: Lecturas de DataColor.

Grafico. Curva de Absorbancia para la curva de subida de colorante Globebix EXL.

Fuente: Lecturas de DataColor.
Tabla. Resultados Fuerza en la curva de agotamiento para el colorante CARMIN LIQUIDO K3

<table>
<thead>
<tr>
<th>N°</th>
<th>Nombre</th>
<th>Conc</th>
<th>Fuerza</th>
<th>dE</th>
<th>Usada Cond. Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CARM RE 50</td>
<td>60.00</td>
<td>100.00</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>2</td>
<td>CARM RE 60</td>
<td>60.00</td>
<td>97.36</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>3</td>
<td>CARM RE 70</td>
<td>70.00</td>
<td>59.55</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>4</td>
<td>CARM RE 80</td>
<td>80.00</td>
<td>48.05</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>5</td>
<td>CARM RE 90</td>
<td>90.00</td>
<td>42.84</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>6</td>
<td>CARM RE 98</td>
<td>98.00</td>
<td>20.90</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>7</td>
<td>CARM RE 98.1</td>
<td>98.10</td>
<td>14.53</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>8</td>
<td>CARM RE 98.2</td>
<td>98.20</td>
<td>13.00</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>9</td>
<td>CARM RE 98.3</td>
<td>98.30</td>
<td>12.77</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>10</td>
<td>CARM RE 98.4</td>
<td>98.40</td>
<td>8.05</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>11</td>
<td>CARM RE 98.5</td>
<td>98.50</td>
<td>4.33</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
<tr>
<td>12</td>
<td>CARM RE 98.6</td>
<td>98.60</td>
<td>4.46</td>
<td>0.00</td>
<td>Unfinished ISAV</td>
</tr>
</tbody>
</table>

Fuente: Lecturas Datacolor
Gráfico. Curva de Reflectancia para la curva de agotamiento de colorante Carmín Liquido K3.

Fuente: Lecturas de DataColor.

Gráfico. Curva de Absorbancia para la curva de agotamiento de colorante Carmín Liquido K3.

Fuente: Lecturas de DataColor.
Anexo 7. Gráficos de las lecturas del DataColor para el desmontado con Sulfato de Sodio.

Gráfico. Pasa-Falla desmontando con Auxiliar: Sulfato de Sodio, para el colorante Globe Yellow 7%.

Fuente: Lecturas DataColor.
Gráfico. Fuerza Color desmontando con Auxiliar: Sulfato de Sodio, para el colorante Globe Yellow 7%.

<table>
<thead>
<tr>
<th>Hum/Obs.</th>
<th>DL*</th>
<th>Da*</th>
<th>Db*</th>
<th>DC*</th>
<th>DH*</th>
<th>DE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>D65 10 Deg</td>
<td>-1.23</td>
<td>-0.40</td>
<td>-3.28</td>
<td>-3.31</td>
<td>0.06</td>
<td>3.53</td>
</tr>
<tr>
<td>CWF 10 Deg</td>
<td>-1.41</td>
<td>-0.10</td>
<td>-3.50</td>
<td>-3.50</td>
<td>-0.07</td>
<td>3.77</td>
</tr>
<tr>
<td>A 10 Deg</td>
<td>-1.37</td>
<td>-0.27</td>
<td>-3.46</td>
<td>-3.45</td>
<td>-0.42</td>
<td>3.74</td>
</tr>
</tbody>
</table>

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla desmontando con Auxiliar: Sulfato de Sodio, para el colorante Globebix EXL 3%.

Fuente: Lecturas DataColor.
Gráfico. Fuerza Color desmontando con Auxiliar: Sulfato de Sodio, para el colorante Globebix EXL 3%.

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla desmontando con Auxiliar: Sulfato de Sodio, para el colorante Carmín líquido K3.

Fuente: Lecturas DataColor.
Gráfico. Fuerza Color desmontando con Auxiliar: Sulfato de Sodio, para el colorante Carmín líquido K3.

Fuente: Lecturas DataColor.
Anexo 8. Gráficos de las lecturas del DataColor para el desmontado con Reductor.

Gráfico. Pasa-Falla desmontando con Auxiliar: Reductor, para el colorante Globe Yellow 7%.

Fuente: Lecturas DataColor.
Gráfico. Fuerza Color desmontando con Auxiliar: Reductor, para el colorante Globe Yellow 7%.

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla desmontando con Auxiliar: Reductor, para el colorante Globebix EXL 3%.

P/F : Falla

<table>
<thead>
<tr>
<th>Llaj/Obs</th>
<th>Decisión</th>
<th>DE</th>
<th>DL</th>
<th>Da</th>
<th>Db</th>
<th>DC</th>
<th>DH</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 10 Deg</td>
<td>Falla</td>
<td>2.24</td>
<td>0.79</td>
<td>-0.04</td>
<td>2.09</td>
<td>1.01</td>
<td>1.05</td>
</tr>
<tr>
<td>WF 10 Deg</td>
<td>Falla</td>
<td>2.60</td>
<td>1.00</td>
<td>-0.23</td>
<td>2.39</td>
<td>2.20</td>
<td>0.97</td>
</tr>
<tr>
<td>10 Deg</td>
<td>Falla</td>
<td>2.39</td>
<td>0.86</td>
<td>-0.29</td>
<td>2.21</td>
<td>1.81</td>
<td>1.31</td>
</tr>
</tbody>
</table>

Fuente: Lecturas DataColor.
Gráfico. Fuerza Color desmontando con Auxiliar: Reductor, para el colorante Globebix EXL 3%.

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla desmontando con Auxiliar: Reductor, para el colorante Carmín líquido K3.

Fuente: Lecturas DataColor.
Gráfico. Fuerza Color desmontando con Auxiliar: Reductor, para el colorante Carmín líquido K3.

Fuente: Lecturas DataColor.

<table>
<thead>
<tr>
<th>Hum./Obs.</th>
<th>DL*</th>
<th>Da*</th>
<th>Db*</th>
<th>DC*</th>
<th>DH*</th>
<th>DF*</th>
</tr>
</thead>
<tbody>
<tr>
<td>D65 10 Deg</td>
<td>0.94</td>
<td>2.13</td>
<td>1.28</td>
<td>2.01</td>
<td>1.47</td>
<td>2.65</td>
</tr>
<tr>
<td>CW/F 10 Deg</td>
<td>0.89</td>
<td>1.53</td>
<td>1.23</td>
<td>1.30</td>
<td>1.48</td>
<td>2.16</td>
</tr>
<tr>
<td>A 10 Deg</td>
<td>1.30</td>
<td>2.45</td>
<td>1.89</td>
<td>2.70</td>
<td>1.52</td>
<td>3.36</td>
</tr>
</tbody>
</table>
Anexo 9. Lecturas de Pasa- Falla de reproducibilidad.

Gráfico. Pasa-Falla de reproducibilidad para el colorante Globe Yellow 7%.

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla de reproducibilidad para el colorante Globebix EXL

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla de reproducibilidad para el colorante Carmín líquido K3.

Fuente: Lecturas DataColor.
Anexo 10. Lecturas de Pasa- Falla Comparativa con colorantes sintéticos: complejo metálico y ácido versus colorantes naturales.

Gráfico. Pasa-Falla del Colorante Globe Yellow 7% versus Colorante sintético Sandolan.

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla del Colorante Globe Yellow 7% versus Colorante sintético Lanaset.

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla del Colorante Globebix EXL versus Colorante sintético Sandolan.

Fuente: Lecturas DataColor.

Fuente: Lecturas DataColor.
Gráfico. Pasa-Falla del Colorante Carmín Liquido K3 versus Colorante sintético Sandolan.

Fuente: Lecturas DataColor

Fuente: Lecturas DataColor