“ESTUDIO GEOLOGICO Y ANALISIS ESTRUCTURAL DE LA VETA EL COFREPARATIA- PROVINCIA DE LAMPA, DEPARTAMENTO DE PUNO”

Tesis Presentada por el Bachiller:

PERCY CESAR MAMANI VILCA

para Optar el Título Profesional de

INGENIERO GEÓLOGO

AREQUIPA – PERÚ

2016
DEDICATORIA

Dedico este proyecto de tesis a mis padres, a quienes a lo largo de mi vida han velado por mi bienestar y educación siendo mi apoyo en todo momento, depositando su entera confianza en cada reto que se me presentaba sin dudar ni un solo momento en mi inteligencia y capacidad. Por ellos soy lo que soy hasta ahora. Los amo con mi vida.
AGRADECIMIENTO

En primer lugar deseo agradecer al asesor de mi tesis Ingeniero Mauro Valdivia Bustamante, docente de la Escuela Profesional de Geología por sus orientaciones, consejos y mejoras en mi trabajo.

De igual manera agradezco a mi familia, a los Ingenieros de la empresa minera CIEMSA y a los docentes de la universidad Nacional de San Agustín de Arequipa, los cuales me ayudaron con su apoyo incondicional a ampliar mis conocimientos y estar más cerca de mis metas profesionales, y a mis compañeros por su apoyo brindado.

Todo ello fue posible primero que nadie con la ayuda de Dios, gracias por otorgarme la sabiduría y la salud para lograrlo.
RESUMEN

CAPITULO I
INTRODUCCION
1.1. Ubicación ... 1
1.2. Accesibilidad ... 2
1.3. Objetivos del Estudio ... 3
 1.3.1. Objetivo general ... 3
 1.3.2. Objetivos específicos ... 3
1.4. Metodología ... 4

CAPITULO II
FISIOGRAFIA
2.1. Relieve ... 6
2.2. Geomorfología .. 6
 2.2.1. Laderas de Pendiente Moderada .. 7
 2.2.2. Valles de Cauce Fluvio Glaciar ... 7
 2.2.3. Colinas Bajas ... 8
 2.2.4. Colinas Altas .. 9
 2.2.5. Altiplanicies Onduladas .. 9
2.3. Drenaje .. 10
2.4. Clima .. 11
2.5. Flora y fauna .. 12

CAPITULO III
GEOLOGIA REGIONAL
3.1. Contexto Geológico Regional .. 14
3.2. Litoestratigrafía ... 15
 3.2.1. Formación Chagrapí (D-ch) .. 15
3.2.2. Formación Ayavacas (K-ay) ... 16
3.2.3. Grupo Tacaza (TTa)) .. 16
3.2.4. Formación Palca (TPa), ... 17
3.2.5. Grupo Sillapaca (TSi) .. 18
3.2.6. Cuaternario ... 19
3.2.6.1. Depósitos morrénicos (Q-m) .. 19
3.2.6.2. Depósitos aluviales (Q-al) ... 19
3.3. Rocas intrusivas .. 20

CAPITULO IV

ESTRATIGRAFIA LOCAL DE LA MINA

4.1. Generalidades... 23
4.2. Estratigrafía: ... 23
4.2.1. Grupo Tacaza (TTa) .. 23
4.2.2. Formación Palca (TPa) .. 26
4.2.3. Cuaternario .. 28
4.3. Rocas intrusivas .. 29

CAPITULO V

GEOLOGIA ECONOMICA

5.1. Generalidades... 32
5.2. Mineralización ... 33
5.2.1. Minerales de mena ... 33
5.2.2. Minerales de ganga ... 34
5.3. Alteraciones hidrotermales ... 35
5.3.1. Silicificación ... 35
5.3.2. Argilización.. 35
5.3.2. Sericitización ... 36
5.4. Alteración Supergena ... 42
5.5. Controles de la Mineralización .. 43
5.5.1. Control Litológico ... 43
CAPITULO VI

MAPEO GEOLOGICO SUBTERRANEO DE LA VETA COFRE

6.1. Mapeo y muestreo subterráneo. ... 46
6.2. Fundamentos del Método. ... 47
 6.2.1. Cartografía Geológica .. 47
 6.2.2. Muestreo ... 47
 6.2.2.1. Muestreo por canales. ... 48
 6.2.3. Procedimiento a seguir .. 48
 6.2.3.1. Dimensiones .. 48
 6.2.3.2. Ubicación y espaciamiento ... 49
 6.2.3.3. Procesamiento de resultados de muestras .. 50
 6.2.3.4. Cartografía Geológica en labores subterráneas 51
 6.2.3.5. Cartografía Geológica de muestras ... 51

CAPITULO VII

MARCO ESTRUCTURAL SUBTERRANEO

7.1. Corredor estructural ... 53
7.2. Determinación del sentido del movimiento de la falla el Cofre 54
 7.2.1. Orientación y proyección de líneas en el espacio ... 55
 7.2.2. Los Tectoglifos ... 55
 7.2.3. Fundamentos del método ... 57
 7.2.4. Los Estilolitos ... 59
 7.2.4.1. Procedimiento a seguir .. 62
 7.2.5. Definición del elipsoide de conjunción de una falla a partir del cabeceo 65

CAPITULO VIII

RESULTADOS Y DISCUSION
8.1. Resultados del mapeo y muestreo geológico subterráneo ... 66
8.2. Planos de muestreo .. 66
8.3. Confección de secciones .. 68
8.4. Resultados de la determinación del sentido del movimiento de la falla el Cofre 70
 8.4.1. Proyecciones estereográficas .. 70
8.5. Definición del elipsoide de conjunción de una falla .. 74

CONCLUSIONES
RECOMENDACIONES
BIBLIOGRAFIA
- Indice de planos
- Indice de fotografías
- Indice de cuadros
- Indice de figuras
ÍNDICE DE PLANOS

<table>
<thead>
<tr>
<th>Plano N°</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ubicación</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Geomorfológico</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Geológico Regional</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Geológico Local</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Clavos mineralizantes y alteraciones</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Secciones transversales de clavos mineralizantes</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Interpretación estructural</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>Plano de Muestreo, galería N° 870 N</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>Plano de ubicación de las proyecciones estereográficas</td>
<td>75</td>
</tr>
</tbody>
</table>
INDICE DE FOTOGRAFIAS

- Fotografía N° 1.- Panorámica del área de estudio... 2
- Fotografía N° 2.- Valle Fluvio glaciar ... 8
- Fotografía N° 3.- Colina Alta del cerro Charcutari ... 9
- Fotografía N° 4.- Drenaje subdentérico a subparalelo .. 10
- Fotografía N° 5.- Zona en periodo seco y de precipitaciones ... 11
- Fotografía N° 6.- Afloramiento de la brecha volcánica .. 27
- Fotografía N° 7.- Afloramiento de las ignimbritas ... 28
- Fotografía N° 8.- Veta el Cofre con contenido de limonita ... 42
INDICE DE CUADROS

- Cuadro N° 1.- Tramos de principales vías de acceso .. 3
- Cuadro N° 2.- Mediciones de fallas ... 61
<table>
<thead>
<tr>
<th>Figura N°</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perfil geomorfológico</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Columna estratigráfica regional</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Muestra de testigos de la andesita basáltica</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Muestra de testigos de las tobas lícticas</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Andesita con textura fluidal</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Toba líctica soldada</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Sección transversal A-A´</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Sección transversal del clavo I, mostrando litología</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Sección transversal del clavo II</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>Sección transversal del clavo III</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>Diagrama de bloques de la zona de estudio</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Dimensiones para un muestreo</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>Ubicación y espaciamiento para un muestreo</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>Diagrama de Rosas</td>
<td>54</td>
</tr>
<tr>
<td>15</td>
<td>Representación de los diferentes tectoglifos</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>Angulos para orientar líneas</td>
<td>58</td>
</tr>
<tr>
<td>17</td>
<td>Características de los tectoglíficos</td>
<td>59</td>
</tr>
<tr>
<td>18</td>
<td>Principales componentes de una falla</td>
<td>61</td>
</tr>
<tr>
<td>19</td>
<td>Proyección estereográfica de una línea</td>
<td>63</td>
</tr>
<tr>
<td>20</td>
<td>Proyección estereográfica para orientar sentido</td>
<td>64</td>
</tr>
<tr>
<td>21</td>
<td>Definición del elipse de confunción</td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>Sección geológica de principales estructuras</td>
<td>68</td>
</tr>
<tr>
<td>23</td>
<td>Medición N° 1</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>Medición N° 2</td>
<td>71</td>
</tr>
<tr>
<td>25</td>
<td>Medición N° 3</td>
<td>72</td>
</tr>
<tr>
<td>26</td>
<td>Medición N° 4</td>
<td>73</td>
</tr>
<tr>
<td>27</td>
<td>Esquema de falla transcurrente</td>
<td>74</td>
</tr>
</tbody>
</table>
RESUMEN

El presente Trabajo Titulado “Geología Preliminar de la Veta El Cofre” trata de la metodología de trabajo para tener un control litológico- estructural en interior mina y determinar el comportamiento que presenta la estructura “El Cofre”.

La geología de la zona de la mina está representada por rocas volcánicas del Grupo Tacaza del Neógeno Oligo-Mioceno formado por derrames andesíticos, y la Formación Palca del Mioceno Inferior constituido por rocas piroclásticas y depósitos Cuaternarios Pleistocénicos y recientes.

Debido a las características que presenta el yacimiento teniendo como factor principal a la mineralización, una falla regional conjugado del tipo Dextral- Normal con un comportamiento estructural y un comportamiento mineralógico de rumbo promedio N 5º - 18º S, y un buzamiento de alto ángulo, también se observan fallas locales que también traen consigo la mineralización con rumbos NE-SW en los niveles superiores, en la mina el Cofre se explota mayormente oro y plata.

Corresponde al tipo de yacimiento polimetálico epigenético Cordillerano de relleno de fisuras. La mineralización económica es epitermal de baja sulfuración del tipo adularia - sericita, con minerales argentíferos con valores de zinc, plomo, y cobre en ciertos sectores constituido por relleno de brechas, incluyen manchas y diseminaciones en fisuras y craquelamientos.

La mineralización de la veta El Cofre está distribuida por 75 % de sulfuros (vetas, brechas, diseminaciones) y 25% de mineral oxidado (diseminados y brechas). Los minerales que lo conforman indican la existencia de una íntima asociación de minerales argentíferos con valores de plomo- zinc- oro.

Las estructuras tectónicas se presentan con variedad de formas y orígenes, con presencia de líneas de Charnela o líneas de máxima curvatura del pliegue, lineaciones de
minerales y estrías de fallas. Debido a los eventos tectónicos se pueden determinar ciertas huellas de deformación permanente destacando los tectoglifos y las juntas o estilolitos que son ciertas huellas de deformación permanente, impresas en la roca, como consecuencia de los eventos tectónicos.
CONCLUSIONES

1. El estudio geológico subterráneo realizado en labores horizontales (galerías, cruceros, ventanas y subniveles, chimeneas, rampas, piques y en tajos), ha permitido una buena interpretación geológica de los diferentes niveles de explotación, definiendo la calidad del yacimiento y su exploración.

2. Los resultados del muestreo van a permitir evaluar si un yacimiento es económicamente explotable o no, planeando y controlando una adecuada exploración, explotación y tratamiento metalúrgico, garantizando los resultados de los ensayes para el cálculo de reservas.

3. La veta principal se encuentra en la caja techo de la falla regional, con un rumbo promedio N 5-35º E y un buzamiento de alto grado 65-85º NW, a veces perpendicular reconocida en aproximadamente 2300 m. a lo largo de dicha falla. Los anchos de la veta son variables, donde el relleno mineralizado va desde 0.2 m. hasta los 10.0 m. en la estructura principal, típica de un sistema tipo “rosario” con ensanchamientos y angostamientos en forma horizontal y vertical.

4. Con las proyecciones estereográficas se pudo determinar que existe movimientos casi horizontales en un inicio de la formación de la falla y a medida que hubo desplazamiento fue adquiriendo más ángulo en sentido vertical, determinándose que está compuesto por una falla conjugada del tipo Dextral – Normal que es producto de esfuerzos Transcurrentes, provocado por tensiones tangenciales.
RECOMENDACIONES

1. Es recomendable para obtener un mejor entendimiento del yacimiento se concluya con el Geología superficial de la zona a una escala adecuada, y levantar columnas estratigráficas para realizar paneles de correlaciones y definir los límites de los contactos y tener una columna ideal de la zona. y relacionarlos con otras columnas dentro de la región de estudio.

2. Se debe efectuar un estudio mineralógico del yacimiento, determinar su paragénesis del mismo, para así tener un mejor control de los minerales asociados a altas y bajas leyes.

3. Continuar con la campaña de sondajes diamantinos en zonas de alto potencial guiados de los sistemas estructurales favorables (lineamientos, quiebres, cambios de buzamiento) donde se convierten en zonas de depósito de fluidos enriquecidos.

5. Ingemmet; (1993).- Geología de la Cordillera Occidental y Altiplano al Oeste del Lago Titicaca- Sur del Perú (Proyecto Integrado del Sur), estudio realizado por el Instituto Geológico, Minero y Metalúrgico (Ingemmet), por O. Palacios, J. de la Cruz, N. de la Cruz, B.A. Klinck, R.A. Allison y M.P. Hawkins.

6. Ingemmet; (1999).- Memoria explicativa del mapa geológico del Perú, Boletín 136 por W. león, O. Palacios, L. Vargas, A. Sánchez.

8. Klaus Steinmuller; (1999).- Depósitos metálicos en el Perú, su metalogenia, sus modelos, su exploración y el medio ambiente. Ingemmet.

CAPITULO I
INTRODUCCION

1.1. UBICACION

La Unidad Minera “El Cofre” se encuentra ubicado a 4350 m.s.n.m. En el flanco izquierdo de valle del Rio Paratía, al costado de la misma población del mismo nombre (fotografía N°1), políticamente se encuentra ubicada en el distrito de Paratía, Provincia de Lampa, departamento y región de Puno.

La ubicación está enmarcada en la Zona 19, Banda L, en el segmento Sur del Cuadrángulo de Ocuviri 31-U, (Plano Nº1). El campamento y las instalaciones de la mina se ubican a una altitud aproximada de 4000 m.s.n.m., está enmarcada dentro de las siguientes coordenadas UTM:

 Coordenadas UTM (GWS 84).
 Norte 8´291,334 Este 328,544
 Norte 8´289,135 Este 328,670
 Norte 8´289,135 Este 328,544
 Norte 8´291,334 Este 328,670
1.2. ACCESIBILIDAD

El acceso principal viene a ser la carretera asfaltada Arequipa – Juliaca, se llega hasta el pueblo de Santa Lucía, con una duración 4.5 horas en autobús, existe un desvío hacia Yungo de 12 kilómetros de longitud y un tiempo de recorrido de 20 minutos, desde este lugar de Yungo se dirige hasta Paratía en carretera afirmada con un tiempo de 30 minutos.

También se puede acceder desde la ciudad de Juliaca considerando dos rutas, que se detalla el siguiente cuadro N° 1:
Cuadro N° 1. Tramos donde se indica las principales vías de acceso por vía terrestre

1.3. OBJETIVOS DEL ESTUDIO

Los objetivos que persigue la siguiente tesis son:

1.3.1. OBJETIVO GENERAL

- Control geológico- estructural de la veta, aprovechando las estrías de falla para determinar el sentido del movimiento.

1.3.2. OBJETIVOS ESPECífICOS

- Contribuir al conocimiento geológico de la mina.
- Realizar el Mapeo subterráneo de la veta el Cofre y muestreo para un buen control de calidad.
- Establecer el comportamiento estructural de la veta, elaborando secciones geológicas con ayuda del mapeo subterráneo y muestreo.
- Demostrar a través del método de proyección estereográfica el tipo de estructura y su desplazamiento que tiene la falla “El Cofre” y determinar los esfuerzos principales en el elipsoide de conjunción, a partir de los tectoglifos que presenta.
- Presentar este trabajo como tesis para la obtención del Título Profesional de Ingeniero Geólogo.

1.4. METODOLOGIA

El desarrollo de este trabajo consistió de los siguientes pasos:

1° etapa de gabinete.- consistió en la recopilación de la bibliografía existentes en la mina, así como se obtuvo los boletines de la zona y zonas adyacentes del Servicio Geológico, Minero y Metalúrgico (Ingemmet), planos topográficos del Instituto Geográfico Militar, trabajos anteriores de la mina realizados por diferentes especialistas y consultores, se utilizaron imágenes de satélite Landsat 5 TM para la interpretación lito-estructural superficial de la zona, finalmente se empezó a ordenar la data general.

2° etapa de campo.- Se realizó el reconocimiento preliminar de la zona, posteriormente al tener la idea de las características generales del depósito, se procedió a efectuar el levantamiento topográfico-geológico del área de interés, asimismo y paralelamente se realizó el mapeo litoógico y muestreo de la estructura mineralizada principal, ésta última mediante canales perpendiculares al rumbo del afloramiento de la veta y de las labores mineras existentes, posteriormente se envió las muestras al laboratorio para los respectivos ensayes. Se hizo el estudio de la veta 870N considerando su comportamiento litológico, estructural y mineralógico.

3° etapa de gabinete.- Orientado íntegramente al procesamiento de los datos e información obtenidos en el campo, los mismos que sirvieron para su respectiva interpretación y así elaborar los diferentes planos, para finalmente culminar con el
trabajo final.

Plano N°1 Ubicación
CAPITULO II
FISIOGRAFIA

2.1. RELIEVE

En la zona de estudio es relevante el relieve, presentando relieves de pendientes suaves en la parte baja (terrazas) e irregulares y escarpadas en las zonas altas, está encerrado dentro del Arco volcánico y el flanco oriental de la Cordillera Occidental del Sur del Perú, se distinguen elevaciones entre 4,350 m.s.n.m., y sobrepasan algunos de ellos los 4800 m.s.n.m., siendo los más importantes los cerros Antallaque, Culapunco, Crucero, Jancayo, las partes altas está conformadas por relieves compuestos de volcánicos.

2.2. GEOMORFOLOGIA

La morfología determinada corresponde a una zona de cordillera con superficie de erosión típica de un modelado fluvioglacial, siendo los rasgos más importantes las planicies onduladas situadas entre los 4000 y 4200 m.s.n.m., superficie puna llamada así por Javier pulgar Vidal (1924) formada como consecuencia de los agentes geológicos
modeladores, presenta una topografía accidentada, se ha diferenciado 02 unidades geomorfológicas como son las correspondientes a las Altiplanicies (Valles de cauce fluvial, Altiplanicies ondulados), y montañas (colinas bajas, colinas altas). (Plano N° 2).

En el área de estudio la geomorfología está compuesto por (Valles de cauce fluvio-glaciar, laderas de pendiente moderada, colinas bajas, colinas altas, Altiplanicies ondulados). (Figura N° 1). (Wilfredo Calisaya -2008).

Figura N° 1. Perfil geomorfológico y ubicación de las principales unidades geomorfológicas locales.

2.2.1. LADERAS DE PENDIENTE MODERADA

Se encuentran rodeando a los valles, con pendientes de bajo ángulo, compuesto de materiales aluviales y coluviales depositados a manera de terrazas, en algunos sitios se encuentra entre las colinas altas y las altiplanicies onduladas de manera gradacional, generalmente tiene una extensión lineal de unos 50m de altura aproximadamente.

2.2.2. VALLES DE CAUCE FLUVIO GLACIAR
Esta unidad geomorfológica es debido a la acción de los cursos del agua y los glaciares que nacen en las partes más altas, ha desarrollado una red hidrográfica favorecido por el levantamiento general de los andes, ha profundizado esta zona originando el valle del río Paratía que discurre en una dirección Este – Oeste, a una altitud promedio de 4300 m.s.n.m. y tiene una forma de U (senil), donde aloja 02 lagunas rodeados con laderas de pendiente moderada y sus afluentes constituyen una sucesión de quebradas ligeramente alineados. (fotografía N°2).

![Fotografía N° 2. Valle fluvioglacial, aguas arriba del río Paratía.](image)

2.2.3. COLINAS BAJAS

Es la zona de la unidad geomorfológica más importante, lugar donde se ubica la Veta “El Cofre”. Se caracteriza por presentar colinas de pendientes suaves, constituidas por los Cerros Amayanes, Visavisa y Choquesayani que van desde los 4350 a 4500 m.s.n.m.
2.2.4. COLINAS ALTAS

Esta unidad geomorfológica representa las partes más altas de la zona y está formada por una cadena de montañas, constituyendo picos elevados con pendientes abruptas, las cuales alcanzan alturas de 4500 a 4850 m.s.n.m. entre las cuales se tiene los Cerros Yanaccacca, Chincojaca, Charcutari, ubicados al Este de la Veta “El Cofre”, presenta una coloración oscura debido a su intensa meteorización. (Fotografía N° 3).

Fotografía N° 3. Se aprecia una colina alta conformado por el Cerro Charcutari 4815 m.s.n.m., al NE del pueblo de Paratía.

2.2.5. ALTIPLANICIES ONDULADAS
Esta geoforma se encuentra entre las colinas altas y colinas bajas, las planicies en la zona de estudio es una superficie levemente inclinada, teniendo un panorama de llanuras y ondulaciones de pequeños cerros; en algunos lugares alojan pequeños pantanos delimitados por laderas moderadas, siendo este el lugar donde se encuentra la fauna y flora silvestre.

2.3. DRENAJE

El drenaje de la zona es de tipo sub-dendrítico a sub-paralelo, siendo más conspicuo entre los cerros Yanaccacca y Amayame típico de los derrames volcánicos. (Fotografía N° 4).

El río Paratía es el principal afluente de la zona y se origina en las partes altas y al Este de la laguna Yanacocha, en el sector de Yuricmoco, al discurrir pendiente abajo recibe el nombre de quebrada Huata Cucho, recibe afluentes pequeños en su recorrido y al confluir con la quebrada Japocuchuva se forma la Qda Llanasalla discurriendo hasta el pueblo de Paratía. Otros afluentes se originan en el cerro Antacahua, justamente en el lugar denominado Sarapata se unir con la quebrada Llanasalla para formar el río Paratía, aguas abajo va a formar el río Verde, a la altura de la hacienda Ccotaña va a conformar el río Cabanillas, que va a confluir en el Lago Titicaca. (Wilfredo
2.4. CLIMA

El clima que se presenta en el sector es el típico de puna, siendo frígido y seco, cerca de los nevados la temperatura baja se acentúa considerablemente disminuyendo el oxígeno por la presión atmosférica, originando el soroche por encima de los 4500 m.s.n.m., se presentan dos estaciones muy bien marcadas (fotografía N° 5), la primera estación de verano es considerada como un clima lluvioso, con fuertes precipitaciones pluviales y presencia de tormentas eléctricas y precipitaciones sólidas, generalmente empieza en el mes de Noviembre y se extiende hasta el mes de Marzo, esporádicamente hasta el mes de Abril, la estación de invierno es seca y se presenta entre Mayo y se extiende hasta el mes de Octubre, se acentúan las fuertes heladas donde las temperaturas llegan inclusive por debajo de los 0°C, se presentan asimismo fuertes vientos generalmente entre los meses de Agosto y Setiembre, la temperatura promedio anual en la zona es del orden de 9°C, las precipitaciones han llegado en algunos sectores hasta un promedio medio...
de 1000 mm. La temperatura de la zona oscila entre los -4 °C y los 15°C en forma aproximada.

Fotografía N° 5. Se aprecia la zona en periodo seco (a); y en periodo de precipitaciones (b).

2.5. FLORA Y FAUNA

La presencia de la flora en la zona está basada en la clasificación ecológica realizada por el Inrena correspondiendo a la zona típica del Altiplano, donde se puede observar pastos naturales, musgos, ichu que se exponen por encima de los 4000 m.s.n.m., generalmente se utiliza como alimento para los animales del sector, o en algunos casos como el ichu que se transforma en yareta y lo utilizan como combustible para cocinar, también existen arbustos como la chilligua y tola, son muy escasas las zonas de cultivo de pan llevar con el clima reinante, utilizando los pequeños valles y laderas empinadas para el cultivo local.

La fauna está constituida principalmente por la alpaca, llama y ovinos, utilizando los pobladores del sector su carne, la leche para la transformación en queso, el cuero lo utilizan para su abrigo, existen asimismo animales silvestres donde predomina las vizcachas y las perdices, no se ha identificado zonas de protección de especies en peligro o extinción.
PLANO GEOMORFOLOGICO

PLANO N° 2
CAPITULO III
GEOLOGIA REGIONAL

3.1. CONTEXTO GEOLOGICO REGIONAL

Una visión general de la geología regional permite establecer que las rocas más antiguas que afloran en la zona de estudio son las correspondientes a la formación Chagrapí (Silúrico Superior-Devónico Inferior) constituida por una secuencia de lutitas arenosas y limolitas micáceas, con horizontes de calizas con restos de corales, continuando la secuencia con la Formación Ayabacas (Cretáceo Medio – Superior) constituídas de calizas masivas, en el Mioceno Inferior afloran rocas Vulcano-Sedimentarias pertenecientes al Grupo Tacaza constituidas de derrames lávicos, en el Mioceno Superior se presentan las
rocas volcánicas pertenecientes al Grupo Palca compuesto por ignimbritas, continua la secuencia con las rocas volcánicas del Grupo Sillapaca (Mioceno Superior) que comprenden lavas de composición dacítica a traquiandesitas, intercalados con depósitos piroclásticos. En el cuaternario se depositaron los materiales morrénicos, fluvio-glaciares y aluviales.

Las rocas intrusivas están representadas por la monzodiorita cuarcífera, se observa como pequeños stocks, conformando los pórfidos al sur de Canuta asociados con la fase principal del vulcanismo, al Suroeste en el cerro Ipucati se observa un stock de diorita, (Proyecto Integrado del sur “INGEMMET” 1993). (Plano. Nº 3).

3.2. LITOESTRATIGRAFÍA

3.2.1. FORMACIÓN CHAGRAPI (D-ch)

Estas rocas afloran al sur este del área de interés, son las rocas más antiguas que afloran en la zona, se le denomina también Grupo Cabanillas Se encuentra infrayaceando a rocas cretáceas en discordancia, siendo uno de los afloramientos más extensos de la zona de Juliaca, Puno, llave y Huancané, llegando a tener espesores de hasta 2500 m, sus afloramientos mejor expuestos se localizan a 40 km al suroeste del poblado de Cabanillas conformando capas muy resistentes, Newell (1949) realizó los primeros estudios, su nombre deriva de la hacienda del mismo nombre, su morfología principalmente es de colinas redondeadas y deprimidas. (Boletín 42 Geología de la cordillera Occidental y altiplano “INGEMMET” 1993).

Hacia la parte inferior presenta areniscas con huellas de ignofósiles, fauna de trilobites, braquiópodos y corales, y con marcas de óndulas de corrientes de dirección preferencial NO-SE, continua hacia la parte media y superior niveles de lutitas grises, lutitas arenosas nodulares, limolitas micáceas, fangolitas, areniscas con abundante contenido de fósiles de braquiópodos, algunas veces se presentan laminadas, se observa niveles delgados de concrecciones de calizas ferruginosas, son comunes los
nódulos de limolita de grano muy fino, principalmente en la parte baja del Cerro Suapuro.

De acuerdo a los fósiles localizados en la zona y su posición estratigráfica se le asigna una edad Silúrico Superior-Devónico Inferior.

3.2.2. FORMACIÓN AYAVacas (K-ay)

Su nombre proviene de la localidad del mismo nombre, cuyos afloramientos restringidos se presentan amanera de listones, su contacto generalmente es tectónico por lo que las relaciones estratigráficas no son bien conocidas, los estratos presentan fuerte buzamiento y a veces están invertidos, con estratos que a veces se repiten debido a su consistencia e incompetencia llegando a formar pliegues isoclinales, se presenta como una megabrecha, su litología consiste principalmente de calizas de tonos grisáceos con presencia de restos de fósiles tipo braquiópodos, equinodermos, túrratelas, calizas bituminosas a manera de horizontes, con una matriz fangolítica roja alrededor de bloques y escamas de caliza fallados y plegados.

Este ensamblaje caótico le da a la formación un rasgo fotogeológico altamente distinguible, por los bloques de caliza relativamente resistente con orientación irregular de tono pálido rodeados por fangolitas de tono oscuro, la potencia promedio es de 150 m (Boletín 42 Geología de la cordillera Occidental y altiplano “INGEMMET” 1993).

Por su posición estratigráfica se le considera con una edad Cenomaniana del Cretáceo Medio.

3.2.3. GRUPO TACAZA (TTa)
El Grupo Tacaza ocupa una gran extensión en el área sur de estudio, suprayaciendo en discordancia angular o sobre rocas de la formación Ayavacas e infrayaciendo al Grupo Palca. Fue estudiado por Jenks en 1946, Newell en 1949, Marocco y del Pino (1966) le dan la categoría de Grupo, No se logró identificar centros volcánicos reconocibles, su afloramiento más relevante se localiza en las cercanías de la mina Tacaza en el sector de Lagunillas.

Se le considera a este Grupo como la primera manifestación del vulcanismo cenozoico en la región (Boletín 42 Geología de la cordillera Occidental y altiplano “INGEMMET” 1993), a nivel regional contiene rocas volcánicas de composición andesítica con un promedio de 40 % de rocas sedimentarias, la potencia estimada es de 400 m.

Constan de derrames lávicos de composición andesítica, vesiculares, con contenido de augita, bloques de piroclastos, tufos como bloques en forma subhorizontal, y una interestratificación de brechas volcánicas, tobas a manera de ignimbritas, constituyendo asimismo erupciones del tipo pliniano. Las rocas sedimentarias de este grupo consisten de una serie de areniscas feldespáticas de tonalidades grisáceas, intercaladas con gravas volcánicas y niveles de conglomerados cuyos clastos son subredondeados englobados dentro de una matriz arenosa, con cuarzo y feldespato.

Por su posición estratigráfica se le considera del Mioceno (Terciario Superior-Neógeno).

3.2.4. FORMACIÓN PALCA (TPa)

Esta formación se encuentra sobre el Grupo Tacaza en discordancia angular y subyaciendo al Grupo Sillapaca en discordancia, su afloramiento típico se localiza en los alrededores del pueblo del mismo nombre, son de gran extensión regional, presentando una morfología escarpada.

Está constituido principalmente por depósitos de flujos piroclásticos de cenizas, ricos
en cristales y fragmentos líticos accidentales de composición dacítica-riolítica en potentes capas gris blanquecinas (Cerpa et al., 2011; Aguilar, et al., 2010), con abundantes fenocristales de plagioclasa, sanidina y cuarzo. Se presenta por todo el área central de estudio (Boletín 42 Geología de la cordillera Occidental y altiplano “INGEMMET” 1993).

En sectores presenta tobas vitroclásticas no soldadas de color rosado grisáceo a rosado amarillento, con contenido de líticos andesíticos, friables y medianamente consolidadas, líticos, lapilli y cenizas volcánicas, las tobas son de fases piroclásticas configurando morfologías escarpadas. Está formando una superficie de plataforma pero que ha sido disectada, su morfología es a manera de mesas debido a la inconsistencia de las rocas, lo que permite que se formen depresiones profundas con una superficie de plataforma disectada.

De acuerdo a su posición estratigráfica se le considera del Mioceno Inferior (Terciario Medio a Inferior- Neógeno).

3.2.5. GRUPO SILLAPACA (TSi)

Su afloramiento más prominente se localiza en el lugar del mismo nombre, Newell en el año 1949 inicia los primeros estudios, considerando a estos volcánicos como Sillapaca, está suprayaciendo al Grupo Palca en discordancia, y cubierto en parte por depósitos morrénicos y recientes, se presenta en forma sub-horizontal y con suave plegamiento, el magmatismo del Mioceno Medio es presentado por este grupo que regionalmente se extiende hacia el Nor-Oeste.

Se encuentra formando farallones y peñascos como producto de la intensa erosión, se puede observar fenocristales de plagioclasas, las tobas en sectores se presentan en bloques, también es común las lavas andesíticas vesiculares con fenocristales de plagioclasa con intercalación de piroclásticos y bombas.
Su litología consiste de una intercalación de depósitos de flujos de lava de composición andesítica a traquiandesítica de tonalidades gris oscuras, flujos piroclásticos en capas de color gris violáceas de composición andesítica, riolítica y algunos niveles de flujos piroclásticos de cenizas gris blanquecinos(Cerpa et al., 2011; Aguilar, et al., 2010). Con esta secuencia culmina la serie Calco-alcalina del Mioceno en el área de estudio. (Boletín 42 Geología de la cordillera Occidental y altiplano “INGEMMET” 1993)

De acuerdo a dataciones radiométricas realizadas para estas rocas subvolcánicas, se le considera dentro de los 14 m.a., correspondiendo al Mioceno Medio a Superior (Neógeno).

3.2.6. CUATERNARIO

3.2.6.1. DEPÓSITOS MORRÉNICOS (Q-m)

Existen evidencias de una glaciación pleistocénica conservando parte de la morfología glacial y depósitos morrénicos como producto paulatino y disección de los glaciares. (Boletín 42 Geología de la cordillera Occidental y altiplano “INGEMMET” 1993).

Los depósitos morrénicos se ubican en la parte sur del área de estudio entre los 4100 y 4900 m.s.n.m., con afloramientos esporádicos de bloques dispersos sin estratificación con clastos de rocas volcánicas de los grupos Tacaza, Palca y Sillapaca, en una matriz aren guijarrosa, se les puede observar también en niveles más bajos generando valles glaciares, presentan crestas rectilíneas y curveadas, a veces formando valles glaciares en terrenos planos y abiertos. Es común la presencia de materiales coluviales heterogéneos.

3.2.6.2. DEPÓSITOS ALUVIALES (Q-al)

Los depósitos aluviales constituidas por materiales no consolidados de arenas,
gravas, limos, y algunos niveles de tufos, conformando llanuras aluviales, terrazas aluviales y depósitos en los fondos y flancos de quebradas, también han sido identificados por debajo de los niveles morrénicos, Fácilmente identificables por debajo de los niveles morrénicos. Por su transporte y deposición han perdido sus características morfológicas, se les ubica también en zonas de topografía moderada y gradientes de flujo bajos o en zonas muy incisas. Las rocas que dieron origen a estos depósitos han sufrido una fuerte denudación por acción del intemperismo.

3.3. ROCAS INTRUSIVAS

Se ha identificado 3 eventos en las cuales se muestran distintos estados en la evolución tectónica, magmática e hidrotermal del corredor Paratía-Ocuviiri. El primer evento, (24-18 m.a), es contemporáneo al emplazamiento de productos volcánicos atribuidos al Grupo Palca que generan intrusivos dioríticos de tonalidades gris pálido, con marcado zonamiento, se observa como minerales principales fenocristales de plagioclasas rodeados de un intercrecimiento de ortosa y cuarzo, los minerales ferromagnesianos están constituidos de hornblenda de color marrón y epidota.

El segundo evento (18-16 m.a), está registrado en los desplazamientos del Sistema de Fallas Cupe-Pilinco, el cual genera el levantamiento de la secuencia volcánica Acocunca (Grupo Tacaza) sobre los depósitos del centro volcánico Yanahuara (Grupo Palca) cerca de Huasituyoc generando numerosos pórfidos, están asociados generalmente a la fase principal del vulcanismo, está considerado como una microdiorita cuarcífera a manera de un pórfido de sanidina con presencia de fenocristales de plagioclasa gris verdosa, con cuarzo en porcentajes muy bajos, así como la biotita y hornblenda están muy bien expuestas.

Los movimientos del Sistema de Fallas Ocuviiri-Arasi ponen en contacto fallado a la
Formación Anta sobre los depósitos de la secuencia volcánica Ocuviri (Grupo Palca), además de generar el sinclinal El Cofre en los depósitos fluvio-lacustres del Grupo Maure, por la intrusión de rocas dacíticas de dirección norte-sur, representando principalmente los conductos de chimenea volcánica, contienen comúnmente fracturas de enfriamiento exagonal. (Evolución Tectónica-Estructural Del Corredor Paratía-Ocuviri “Ingemmet” 2014).

PLANO REGIONAL
Columna estratigráfica regional

Figura 6
CAPITULO IV
ESTRATIGRAFIA LOCAL DE LA MINA

4.1. GENERALIDADES

La base de la secuencia lo constituye el Grupo Tacaza, conformado por las lavas y materiales piroclásticos de naturaleza andesítica; sobre yaciendo a este, se encuentra el Grupo Palca en discordancia angular, formado por tobas soldadas, no soldadas e ignimbritas de naturaleza riodacítica y andesítica. Plano. Nº 4, figura Nº 2.

4.2. ESTRATIGRAFIA

4.2.1 GRUPO TACAZA (TTa)

Localmente el Grupo Tacaza aún no está definida su base, debido a que no se tiene una sección completa de su espesor, pero oscilan desde los 300 metros hasta los 2000 metros (Newell, 1949; Klinck, 1986), datado radiométricamente de 30 a 22 Ma. (Oligoceno Superior- Mioceno Inferior; Klinck, 1986). (Proyecto Integrado
La exploración local ha permitido determinar en su base flujos de lava, generalmente bien definidos, son de composición andesítica basáltica, con una viscosidad moderadamente alta debido a un enfriamiento lento que ha permitido la formación de texturas porfirítica gruesas, se observa también texturas brechadas con fragmentos y matriz homogénea andesítica, cuyos clastos son angulosos y sub angulosos, de color gris oscuro. La descripción macroscópica del logueo que se tiene de las muestras están compuestas por: Pasta afanítica =60%, Plg. (Ca) =25%, Horblenda =3%, Augita =5%, fragmentos líticos = 2% y otros = 5%; de textura porfirítica; (Figura N° 3).

Figura N° 3. Muestras de Testigos, donde se aprecia la andesita basáltica; Fracturas rellenadas con calcita primaria.

En contacto con estas andesitas basálticas se encuentra un horizonte de rocas piroclásticas con potencias variables que pueden llegar hasta los 100 m; donde se destaca la presencia principalmente las tobas líticas soldadas, de colores grises a pardos rojizos (cambian de coloración conforme se acerca a la superficie) y en algunos tramos se encuentra brechas con clastos sub-angulosos a angulosos de
tamaños centimétricos de andesita. (Figura N° 4).

Figura N° 4. Muestra de Testigos, donde se aprecia las tobas líticas soldadas; fracturas rellenadas, con calcita primaria. En la parte superior, se observa derrames de lavas andesíticas de textura fluidal (al Sur, Nivel 00, Nivel 040), de color gris oscuro, se exponen fenocristales de plagioclasas alterados y de forma alargada (fiames), este horizonte de andesitas es el control litológico de la mineralización para los niveles ya mencionados. (Figura N° 5). En algunos tramos presenta auto-brechamiento, en contacto con las tobas de la formación Palca.
Figura N° 5. Andesita con textura fluidal, alteración argilica moderada, Nv. 040 (Sur).

4.2.2. FORMACIÓN PALCA (TPa)

Está identificada esta formación por la presencia de rocas piroclásticas, tobas soldadas, tobas no soldadas, brechas volcánicas y en su nivel superior por Ignimbritas, que descansan en discordancia angular sobre el grupo Tacaza, con edades de 22 – 16 Ma. (Mioceno –Inferior; Bellon & Lefevre 1976, Clark 1990). (Proyecto Integrado del sur “INGEMMET”1993).

Las tobas líticas soldadas conforman la base y afloran en gran extensión dentro del área de estudio. Son de color pardo rojizo a marrón grisáceo; de textura piroclástica, con fragmentos líticos de andesita con tamaños milimétricos a centimétricos, presencia de fragmentos de pumita alargados, en matriz afanítica, con alteración argilica moderada.

Las tobas líticas no soldadas presentan tonalidades grises, con fragmentos líticos de andesita, dacitas y pumitas de tamaños milimétricos a centimétricos, englobados en matriz afanítica, se encuentra erosionado por la meteorización fisicoquímica debido a que no está consolidado y lo hace menos competente para el clima de la zona. (Figura N° 6).

Figura N° 6. (a).Toba lítica soldada, con alteración argilica ligera; (Nv. 100 clavo. II); (b)
Toba lítica no soldada, con alteración argilica moderada, (Nv. 140 Clavo II – III).

Las brechas volcánicas en algunos sectores afloran cubriendo a las tobas líticas, está compuesto por clastos de andesitas, dacitas, ignimbritas y pumitas de forma angulosas a sub angulosas. (fotografía N° 6); En algunos sectores presenta patinas de oxidación, producto de ello son los minerales de Psilomelano y Pirolusita.

Existe un pequeño horizonte de aglomerado que delimita la falla hacia el norte, esto se aprecia claramente en las labores del nivel -50 y nivel 00, con clastos subredondeados a redondeados con tamaño de clastos de hasta 1m de diámetro, englobado en una matriz areno-tufácea deleznable de colores pardo rojizo a grises.

Fotografía N° 6. Afloramiento de la Brecha volcánica en superficie de la veta “El Cofre” mirando al NW. (Imagen del círculo a 4540 msnm).

En la parte superior de la Formación Palca se aprecia Ignimbritas de color gris blanquecino a rosáceo, con una potencia aproximada de 50m en el cerro Amayane, presenta una disyunción columnar propia de las ignimbritas bien consolidadas y
vesículas de tamaños centimétricos. (fotografía N° 7).

Fotografía N° 7. Afloramiento de las Ignimbritas en superficie, cerro Amayane, mirando alW, a 4550 m.s.n.m.

4.2.3. CUATERNARIO

El cuaternario en la zona está conformado por sedimentos aluviales y fluvioglaciares, depositados en el Holoceno. Se ha determinado presencia de depósitos aluviales y fluvioglaciares cubriendo a rocas más antiguas, rellenando depresiones o en el lecho de lasa quebradas. Los depósitos aluviales están constituidos de sedimentos no consolidados de arena, grava y limos, estos materiales han sido acarreados y acumulados debido a la acción de la gravedad, se puede observar de igual manera una intercalación de materiales coluviales.

Los depósitos fluvioglaciares son sedimentos que se han formado de los deshielos de los glaciares, van arrastrando materiales de derrubios pendiente abajo, están compuestos de gravas y arenas de diferentes tamaños, llegando a formar llanuras y superficies de erosión uniformes.
4.3. ROCAS INTRUSIVAS

Los intrusivos que afloran en el área de estudio están afectando parte de la secuencia volcánica, siendo fundamentalmente de composición intermedia y se presentan como pequeños stocks, son pequeños intrusivos hipabisales subvolcánicos de composición dacítica, se presenta de forma circular y cuyos lados son escalonados, están muy fracturados, su textura es granular, sus componentes son de plagioclasa sódica, con minerales ferromagnesianos de biotita y hornblenda, los afloramientos más resaltantes se localizan en el cerro Amayane, está parcialmente erosionado, en sectores se observa fenocristales de ortoclasa englobados dentro de una matriz fina, y algunos puntos irregulares de arcilla. Posiblemente esté relacionado esta roca con los eventos de mineralización, el cual haya permitido la deposición de la mineralización de la veta el Cofre.

Se han efectuados dataciones radiométricas, siendo considerada del Mioceno Superior.
PLANO N° 4 GEOLOGICO LOCAL
CAPITULO V
GEOLOGIA ECONOMICA

5.1. GENERALIDADES

Se ha podido definir una circulación de fluidos magmático-hidrotermales hidrotermales con contenido de pirita y que están asociados a sílice, generalmente se encuentra asociado a mineralización en vetas y vetillas, galena, esfalerita, ocasionalmente se observa mineralización diseminada en vetillas, la mineralización en vetas ocurre con presencia de material relleno de fractura y en partes brechada con contenido de minerales de galena, esfalerita y pirita; la mayor parte presenta oxidación, encontrando limonitas.

La veta El Cofre está clasificado como un yacimiento epigenético de relleno de fisuras de baja sulfuración con bajo contenido de pirita, es hipógeno por haber sido formado a partir de aguas ascendentes de derivación magmática, y con pH del fluido neutro a alcalino.
5.2. MINERALIZACION

Una de las características de la mineralización es la presencia de valores altos argentíferos, siendo más altos sus valores en los clavos mineralizantes, a profundidad la mineralización se va tornando más concentrada, infiriendo que se tenga buenas posibilidades de que la mineralización profundice en los niveles inferiores, la distribución de la mineralización en sentido horizontal y vertical es constante.

Se ha podido determinar en la veta el Cofre contenido de minerales de mena y de ganga, de acuerdo al siguiente detalle:

5.2.1. MINERALES DE MENA

- Argentita (SAg₂).- Está considerado como el mineral más importante en la veta el Cofre, el mineral productivo es la plata, se presenta de tonalidades gris plomo y gris acero, se expone en forma de venillas cuyo tamaño varía desde las micras hasta los milímetros, a medida que se profundiza la veta aumenta el contenido de plata.

- Oro (Au).- se presenta generalmente asociado al cuarzo y la pirita, se expone alrededor de una fuerte alteración de tipo silicificación, es de color amarillo oro, de brillo metálico.

- Esfalerita (SZn).- Se presenta con una exfoliación perfecta, de color acaramelado y marrón rojizo, de brillo metálico, está ligada a la galena, se caracteriza por exponerse en masas exfoliables.

- Galena (SPb): Constituye un mineral de plomo y fierro, su exposición es a manera de masas exfoliables, está íntimamente ligada a la esfalerita y pirita, es de tonalidad gris plomizo con brillo metálico, su forma de presentación es masiva y granular.
- Calcopirita (CuFe₂S₂).- Constituye un bisulfuro ed cobre y fierro, presenta un color amarillo oro con brillo metálico, se expone como pequeñas venillas o diseminadas, dentro de los intersticios y fracturas del cuarzo, está asociado a la pirita generalmente. Su origen es hidrotermal de alta temperatura.

5.2.2. MINERALES DE GANGA

- Pirita (S₂Fe).- Se presenta generalmente diseminado o como relleno de fracturas en la veta, está asociado al cuarzo, constituye un mineral secundario que se ha originado como consecuencia de la alteración hidrotermal, su color característico es el amarillo latón.

- Cuarzo (SiO₂).- Principalmente está conformando el relleno de la veta, de tonalidad blanco lechoso, su presentación es en forma masiva, lechoso o hialino, es común su exposición cavernosa.

- Rodonita (SiO₃Mn).- Se expone asociado a la rodocrosita y el cuarzo, generalmente se presenta en forma masiva y de tonalidades rosado a pardo.

- Limonita (Fe₂O₃H₂O).- Se ha originado como consecuencia de la descomposición de la pirita esencialmente, así como de otros minerales con contenido de sulfuros de fierro, siendo considerado como de origen secundario, su color característico es verde limón a amarillo limón.

- Psilomelano (BaH₂O)Mn₂O₅.- Se presenta generalmente por la precipitación del agua meteórica que en contacto con los minerales de Mn forma una patinas de colores lustroso brillante.

- Sericita.- Se presenta de un brillo sedoso, de tonalidades blanquecinas, se ha generado como resultado de la alteración hidrotermal de los feldespatos.
5.3. ALTERACIONES HIDROTERMALES

Como resultado de los procesos hidrotermales que han ocurrido en la zona, las rocas encajonantes han resultado afectadas por los focos mineralizadores utilizando como medio el fracturamiento intenso que se originó debido a los esfuerzos tectónicos, y que permitieron de este modo generar zonas de debilidad que fueron propicios para la circulación de líquidos y gases.

Las alteraciones que se presentan en la veta están distribuidas zonalmente, y que son coincidentes con la mineralización que se exponen a manera de clavos, hacia la parte norte existe mayor predominancia de oro en temperaturas mayores de 300°C, mientras que en la parte sur predominan los minerales oxidados de cobre. Las principales alteraciones que se ha determinado en la veta son la silicificación, argilización y sericitización.

5.3.1. SILICIFICACION

Se caracteriza por la competencia que le impone a la roca encajante, siendo muy competente, se expone a manera de una fina diseminación de sílice y que se impregna en la roca encajante, se origina de los fluidos hidrotermales que se presentan a temperaturas que oscilan entre los 300°C y 500°C.

Esta alteración se produce a temperaturas entre 300 y 500°C, con relleno de microfracturas de sílice o cuarzo, destruyendo totalmente la mineralogía original, y se comporta como una masa silícea y produciendo el endurecimiento de las rocas.

5.3.2. ARGILIZACION

Constituye una alteración hipógena, con contenido de arcillas que se han originado de la alteración de los feldespatos presentes en la roca encajante, siendo los más
relevantes el caolín (caolinita) y la pirofilita, su ocurrencia está en rangos de pH 6 a 7, la caolinita se origina en temperatura promedios de 200°C, mientras que al pirofilita se origina por encima de los 300 °C., su presencia produce en la mina una gran inestabilidad en los frentes de explotación.

5.3.3. SERICITIZACION

Sus minerales constituyentes son las micas, pirita y sílice, con presencia de minerales accesorios como la clorita y la illita. Su rango de ocurrencia se encuentra entre un pH 5 a 6, y a temperaturas promedio de 200°C, esta alteración va gradando hacia afuera. Se encuentra bordeando la veta, es posible localizarla asimismo en las zonas brechadas. En ocasiones esta alteración en ensamble con la sílice va a conformar la alteración cuarzo-sericita, presentando una ligera diseminación de pirita y en proporciones muy bajas arcillas. El cuarzo va a producirse como subproducto de las reacciones de hidrólisis y se va a localizar en las rocas alteradas.

Generalmente los feldespatos son atacados por sustancias volátiles de pH intermedios a moderadamente bajos, formando las arcillas, mientras que las plagioclasas van a sufrir una hidratación o hidrólisis constituyendo la formación de arcillas, la alteración sericítica se sobreimpose en las zonas alejadas del centro de alteración potásica.
(Ver plano Nº 5). CLAVOS MINERALIZANTES
Figura N° 8. Sección transversal del “clavo I” mayor silicificación y una ligera argilización
Figura N° 9. Sección transversal del “clavo II” mayor argilización y una ligera silicificación
Figura N° 10. Sección transversal del “clavo III” argilización y silicificacion en la parte superior y una ligera silicificacion en la parte inferior.
PLANO N° 6 PLANO DE SECCIONES TRANSVERSALES DE CLAVOS MINERALIZANTES
5.4. ALTERACION SUPERGENA

La alteración supérgena se origina de los depósitos minerales hipógenos que involucran la liberación de cationes y aniones sulfato mediante la oxidación de sulfuros hipógenos, los sulfatos así generados son solubles y transportados hacia abajo por aguas meteóricas percolantes, los cationes descienden en solución y pueden ser redepositados por reacción con iones carbonato, silicato, sulfato o sulfuro. Los minerales oxidados que permanecen en la zona oxidada pueden ser precipitados debajo del nivel de aguas subterráneas por los sulfuros hipógenos y formar sulfuros más ricos.

Los procesos supérgenos modifican la mineralogía de los cuerpos mineralizados de origen hidrotermal y pueden producir importantes enriquecimientos secundarios, dan como resultado la oxidación y reducción con presencia de vetas de óxidos de fierro tipo hematita y limonitas, algunas veces está asociada a la alteración argillica en superficie debido a la alteración de las plagioclasas. (Fotografía N° 8).

Fotografía N° 8. Veta el Cofre con contenido de limonita de tono amarillento, Manganeso y Hierro en tono celeste.
De igual modo por la oxidación de los minerales primarios se ha formado gohetita, la rodonita presente en la veta ha originado la pirolusita y psilomelano (óxidos de manganeso).

5.5. CONTROLES DE LA MINERALIZACIÓN

Los principales controles de mineralización localizados en la veta el Cofre son el control litológico, mineralógico y estructural.

5.5.1. CONTROL LITOLÓGICO

Las zonas de alteración corresponden a rocas volcánicas constituidas de derrames lávicos de composición andesítica, son muy competentes por su alto contenido de sílice, generando un fuerte fracturamiento y que ha permitido un cambio en sus condiciones físico-químicas que ha originado finalmente la depositación de fluidos mineralizantes en las fallas y fracturas pre-existentes, permitiendo la formación de vetas y vetillas.

Las cajas están constituidas por derrames lávicos de textura afanítica, ligeramente argilizadas y piritizadas, pertenecientes al Grupo Tacaza, y rocas piroclásticas de la formación Palca, siendo considerados como controles litológicos favorables de la mineralización. Las mejores estructuras mineralizadas están concentradas en las tobas líticas soldadas y los derrames lávicos de composición andesítica.

5.5.2. CONTROL MINERALÓGICO

La rodonita –rodocrosita constituye el control mineralógico de la plata en la veta, la calcita se encuentra rellenando las fracturas y la piromilita se presenta como alteración argilica, El cuarzo constituye el mineral guía, está asociado con óxidos como la limonita y el Psilomelano hacia superficie, en interior mina en la veta está asociado a la pirita, asimismo el cuarzo es expone asociado a la limonita y psilomelano
en superficie, mientras que en los niveles de la mina está asociado a la pirita.
La presencia de vetas y vetillas están asociadas a cuarzo y pirita donde se emplaza el oro y plata, el cuarzo está asociado a la limonita y el psilomelano, las alteraciones han originado una serie de anomalías de color considerados como indicativos de mineralización, en sectores se observa fases cristalinas bien conformadas. El cuarzo-calcita es indicador de profundidades someras a bajas temperaturas, la diseminación de la pirita y su oxidación forma minerales supérgenos como la limonita y en menor proporción óxidos de manganeso.

5.5.3. CONTROL ESTRUCTURAL

Las principales fracturas con diferentes direcciones y las características estructurales han permitido el alojamiento de la mineralización como vetas y vetillas, la intersección de fracturas de rumbo NE-SO y fallas, así como su amplia distribución ha favorecido la circulación de soluciones mineralizantes y deposición de la mineralización, ha permitido una mineralización más favorable, debido a los movimientos pre-minerales normales se han producido clavos subhorizontales, las fallas longitudinales constituyen guías estructurales primarias, las fallas pre-minerales son las que controlan las soluciones mineralizantes, las fracturas y diaclasas son indicadores estructurales secundarios. (Figura N°11).
Figura N° 11. Diagrama de bloque de la zona de estudio, (controles estructurales y litológicos); posible génesis del yacimiento tipo Epitermal de Baja sulfuración (imagen: edición propia; basada en Albino G.V. (1994).
CAPITULO VI

MAPEO GEOLOGICO SUBTERRANEO DE LA VETA EL COFRE

6.1. MAPEO Y MUESTREO SUBTERRANEO

Dentro de los trabajos que se ha desarrollado en la mina “El Cofre” está el mapeo geológico subterráneo y la elaboración de los planos geológicos de niveles, teniendo como soporte el muestreo geológico.

Uno de los objetivos fundamentales de este muestreo fue el de determinar el contenido de oro, plata y Zinc en el yacimiento, su valor en base a las leyes de las muestras reportadas por el laboratorio, para poder determinar su emplazamiento litológico- mineralógico, y conservar un buen tonelaje para su tratamiento respectivo.

Los ensayes de las muestras que se les aplicó fueron en:
- Estimación de Reservas, Recursos y Potencial del Yacimiento.
- Planeación de una explotación ordenada en base a las reservas existentes, las cuales contienen bloques de mineral con cuyos tonelajes y leyes se haría un adecuado blending,
esto hace posible que se envíen a la Planta mineral con leyes lo más uniforme posible, que conllevará a una mejor eficiencia metalúrgica.

- Control de Calidad, muy necesario durante el minado (explotación) y tratamiento metalúrgico.

6.2. FUNDAMENTOS DEL METODO

6.2.1. CARTOGRAFÍA GEOLÓGICA

Es la representación gráfica a escala determinada de los rasgos geológicos en sus relaciones espaciales correctas de lo observado en las labores subterráneas mediante ploteos en un plano topográfico de los caracteres geológicos. Esos rasgos geológicos incluyen estructuras (fallas, vetas, diaclasas, pliegues, crestones sílicos, cuerpos, junturas), litologías, alteraciones, contactos, estratificación, centros volcánicos, etc.

6.2.2. MUESTREO

Viene a constituir una de las actividades más importantes y necesarias para el geólogo, quien en base a los resultados de los ensayes de las muestras se va a evaluar si un yacimiento es económicamente explotable o no, con los resultados de muestreo se planea y controla una adecuada exploración, explotación y tratamiento metalúrgico, teniendo cuidado que el muestreo sea de lo más correcto, permitiendo de esta manera garantizar los resultados de los ensayes obtenidos para el cálculo de reservas, mientras que en la etapa de exploraciones la evaluación de los resultados del muestreo acompañado de una buena interpretación geológica va a definir la calidad de un yacimiento y su consiguiente exploración.

Los métodos de muestreo que se utilizan en la Unidad Minera “El Cofre” frecuentemente son el muestreo por canales.
6.2.2.1. MUESTREO POR CANALES

El método consiste en extraer muestras en canales rectangulares previamente marcados en el terreno, en forma transversal al rumbo de las estructuras tabulares o cuerpos elongados a intervalos regulares. El canal aplicado es transversal a la estructura, es horizontal en cualquier tipo de labor subterránea o afloramientos o en trincheras de afloramientos cubiertos, a excepción de los mantos donde el canal es de tipo vertical, así como en las zanjas (trincheras en canchas) o pozos que se hacen en canchas nuevas o antiguas.

Cada canal se le divide de acuerdo a las características mineralógicas y paragenéticas que pueda presentar una estructura, los fragmentos que caen al piso no deben ser recogidos; debiendo picar nuevamente el mismo punto para obtener una nueva porción.

6.2.3. PROCEDIMIENTO A SEGUIR

6.2.3.1. DIMENSIONES

En general, en estructuras anchas o con bandas de diferente mineralización, el canal es de tipo horizontal y se subdividen en varios canales, teniendo cada división una longitud mínima de 0.10m y máxima de 1.50m en mineralización de Pb-Zn-Cu, y longitud mínima de 0.10m y máxima de 1.00m en mineralización de plata-oro.

Las dimensiones del canal dependieron de la potencia de la estructura, pudiendo tenerse más de un canal contiguo en una misma ubicación, las dimensiones de las muestras de canales son de 2.0 m. (figura N° 12).
6.2.3.2. UBICACIÓN Y ESPACIAMIENTO

La ubicación de los canales en galerías y cruceros están referidos a puntos topográficos, o de lo contrario se toman como referencias las chimeneas donde la ubicación de los canales están referidos a la riel o piso de labor.

En tajos la referencia está definida en un echadero o una chimenea de acceso, pero además se mide la altura de la corona con levantamiento a brújula. En el caso de ventanas, las referencias se definen al inicio desde una galería, by pass, etc.

El espaciamiento de los canales se ha establecido en 2m, para galerías y chimeneas que se encuentran sobre estructuras mineralizadas. En los tajos, el espaciamiento entre canales se ha establecido hasta un máximo de 2 cortes en mineralización de oro. (Figura N°13).
Figura N° 13. Ubicación y espaciamiento para un muestreo en una labor subterránea.

6.2.3.3. PROCESAMIENTO DE RESULTADOS DE MUESTRAS

Las muestras son remitidas al Laboratorio para sus análisis respectivos, son procesadas para obtener las leyes correspondientes. Estos resultados son emitidos por el laboratorio y enviados mediante un Reporte al Departamento de Geología en el cual aparece la ubicación de las muestras, anchos y los ensayes respectivos.

Cuando las muestras son de tajos (con fines de Control de Calidad), los ensayes respectivos se utilizan para separar, previo cálculo de promedios y marcando con pintura en el terreno, las partes estériles de las partes explotables. Muchas veces se pintan en las paredes del tajo, las leyes promedio de los diferentes sectores.

Las muestras son de tajos, los resultados de ensayes se usan en el Inventario de Minerales, o para reorientar las exploraciones.
6.2.3.4. CARTOGRAFÍA GEOLOGICA EN LABORES SUBTERRANEAS

El Cartografiado Geológico se efectuó en labores horizontales (galerías, cruceros, ventanas y sub niveles), chimeneas, rampas, piques y en tajos, confeccionando a la vez secciones longitudinales y transversales de las estructuras (Vetas, Cuerpos, etc.), utilizando datos de superficie y labores subterráneas.

En la Cartografía Geológica de galerías, cruceros y ventanas, se usó como base topográfica los planos de levantamiento topográficos efectuados con estación total. La escala de mapeo fue de 1:250 ó 1:100 en yacimientos con zonas de mineral de bonanza. El formato que se usó para cartografiados geológicos fue A4, dibujando la labor a mapearse con puntos y detalles topográficos que sirvieron de referencia.

Los rasgos geológicos fueron generalizados con simbologías y colores establecidos, mediante los cuales se hicieron anotaciones en detalle de esos caracteres geológicos que se presentan en el terreno.

6.2.3.5. CARTOGRAFÍA GEOLOGICA DE MUESTRAS

Las mediciones para graficar los rasgos geológicos en el formato A4 (que tenga el trazo de la chimenea y el nivel donde comienza) se hicieron tomando como referencia el piso del túnel en el cual se encuentra la chimenea.

La Cartografía de chimeneas se hizo en una sección transversal a una estructura tabular, en la labor se levantó la topografía con brújula colgante a la escala 1:500, 1:250 ó 1:100 tomando los rasgos estructurales (fallas, brechamiento, fracturas tensiónales, diaclasas, estratificación, junturas, etc.), ramales mineralizados, alteraciones de las cajas, litología, contactos, pliegues (si existen), etc. En el caso de brechamiento se indicó el grado y tipo de brechas (fuerte, moderado y débil, o
macro brecha, meso brecha y micro brecha), la descripción geológica, la simbología, colores y abreviaturas, son los mismos que se utilizan en Cartografía de labores horizontales.

El mapeo de tajos se realizó con fines de Control de Calidad, y efectuar la interpretación geológica, que se efectuó conjuntamente con los de las labores horizontales, verticales y muestreos respectivos, definiendo la geometría y continuidad de la mineralización económica del yacimiento y orientando las exploraciones y las explotaciones.

Cada 3.0m se efectuó el cartografiado geológico, considerando los rasgos estructurales (fallas, brechamiento, fracturas tensiónales, diaclasas, estratificación, junturas, etc.), estructuras mineralizadas, ramales mineralizados, alteraciones de las cajas (indicando grados de alteración), diseminación de minerales, litología, contactos, pliegues (si se presentan), etc. La simbología, colores y abreviaturas, son los mismos que se emplearon en los otros tipos de labores.
CAPITULO VII
MARCO ESTRUCTURAL SUBTERRANEO

7.1 CORREDOR ESTRUCTURAL

En la zona de estudio se ha podido determinar un corredor estructural, el cual se expone como lineamientos cuya dirección preferencial es hacia el NO, a la vez que se ha desarrollado todo un sistema de fracturas de dirección N-S y N-NE respectivamente, estas fracturas han sido producidas por tensión de alto ángulo. (Plano N° 7).

Estructuralmente se ha llegado a definir que la principal mineralización ocurre cerca o junto a la falla longitudinal localmente conocida como falla regional, por lo tanto sigue el mismo rumbo y buzamiento de esta falla que controla la mineralización, se trata de una falla pre mineral, no descartando la posibilidad de encontrar otros lentes mineralizados en su prolongación hacia el sur.

En la mina el cofre se presenta una falla conjugada del tipo Dextral - normal cuya dirección predominante es: N 5º - 25º E, cuyo buzamiento es de alto grado que varía entre 70º NO a subvertical, en algunos casos se puede observar estrangulamientos y
ensanchamiento de la estructura, generalmente en el cambio de rumbo.

Se ha realizado el diagrama de rosas con los datos obtenidos como se muestra en la Fig. 16; se puede observar que se tiene dos orientaciones predominantes que son N 25º E que corresponden a las fallas que controlan la mineralización: y N 26º O que son los lineamientos regionales NO. (Figura N° 14).

![Diagrama de Rosas de las Principales Estructuras](image)

Figura N° 14. Diagrama de Rosas de las Principales Estructuras

7.2. DETERMINACIÓN DEL SENTIDO DEL MOVIMIENTO DE LA FALLA EL COFRE

Aprovechando que en la mayoría de las labores subterráneas se puede observar a lo largo y en diferentes niveles, las estrías de plano de falla, se pudo poner en práctica el método para determinar el sentido del desplazamiento con ayuda de la proyección estereográfica y poder determinar el tipo de falla que presenta la unidad minera El Cofre, teniendo como base el método anterior mencionado.
7.2.1. ORIENTACIÓN Y PROYECCIÓN DE LÍNEAS EN EL ESPACIO

Las estructuras lineares en rocas aparecen con gran variedad de formas y orígenes, pueden ser estructuras primarias desarrolladas durante la sedimentación, o más interesante para la geología estructural son las estructuras lineares de origen tectónico, líneas de charnela o líneas de máxima curvatura del pliegue, lineaciones de minerales en tectónicas metamórficas, estrías de fallas que nos dan información de la dirección del movimiento de la falla.

7.2.2. LOS TECTOGLIFOS

La geología estructural mediante el estudio de pliegues y fallas ha permitido establecer la orientación y disposición en el espacio de las tres componentes ortogonales del elipsoide de deformación, a escala de detalle aumenta significativamente las posibilidades de definición de estas componentes al analizar las micros estructuras, y de manera concreta los Tectoglifos, que son ciertas huellas de deformación permanente, impresas en la roca, como consecuencia de los eventos tectónicos.

Entre los tectoglifos, destacan por su interés, los siguientes tipos:
- Los estilolitos o juntas estilolitas.
- Las venas de calcita u otras mineralizaciones.
- Las estrías de fricción en los planos de falla.

Cada uno de ellos posee un significado genético que lo hace muy útil para definir el elipsoide, los diferentes tectoglifos aparecen en la naturaleza relacionados según se señala de manera ideal en la figura N° 15.
Plano N° 7 Interpretación Estructural

7.2.3. FUNDAMENTOS DEL MÉTODO

A.- Orientación y proyección de líneas en el espacio.- Desde el punto de vista de la proyección estereográfica, las líneas vienen representadas en el plano ecuatorial de la esfera de proyección por un punto, tanto si nos referimos a líneas que se puedan observar físicamente (cantos estirados, estrías de falla, etc.) como aquellas que resultan de la intersección de planos (clivaje y estratificación, dique y esquistosidad, etc.). Todas estas líneas se orientan en el espacio en función de los ángulos que se enuncian a continuación.

B.- Dirección.- Es el ángulo que forma la proyección en la horizontal de la línea, con el norte geográfico, normalmente se representa con la letra δ.

C.- Inmersión (plunge).- Es el ángulo que forma la línea con su proyección en la horizontal, medido en el plano vertical que contiene a la línea y a su proyección. Se
D.- **Cabeceo (pitch, rake).**- Muchas estructuras lineares se desarrollan dentro de planos estructurales, en el caso de que una línea esté contenida en un plano inclinado, el cabeceo es el ángulo entre la línea y la dirección del plano inclinado que la contiene, medido en este plano inclinado. Se representa con la letra c. (Figura N° 16).

![Diagrama de ángulos utilizados para orientar líneas en el espacio](image)

Para orientar una línea en el espacio, es necesario conocer su dirección y un segundo ángulo que puede ser la inmersión o bien el cabeceo sobre un plano conocido. Si se utiliza la inmersión, hay que imaginar un plano vertical que contiente a la línea y a su proyección. La dirección de este plano vertical es la dirección de la línea y el ángulo que forman la línea y su proyección, es el ángulo de inmersión. De las dos posibilidades de dirección (a 180° una de otra), se escogió aquella hacia la cual se dirige la inmersión de la línea (sentido de inmersión).
7.2.4. LOS ESTILOLITOS

Los estilolitos constituyen juntas de discontinuidad de la roca, donde las porciones de ambos lados de la roca se han aproximado entre sí, e interpenetrado, desapareciendo parte del material mediante un mecanismo de disolución bajo presión. Su forma en picos de orientación paralela, visible al abrir la junta, indica la dirección del acortamiento.

Esta dirección se orienta de manera perpendicular, coincidente estadísticamente, con la componente del eje mayor del elipsoide de deformación σ1 o, lo que es lo mismo, la junta estilolítica se orienta estadísticamente de manera ortogonal a dicha componente conteniendo por tanto al plano (σ2, σ3). (Figura N° 17).

Para nuestro caso solo se ha interpretado los tectoglifos relacionados con la falla donde se ha trabajado con las estrías de fricción.

Las estrías de fricción, en los planos de falla, indican que existe un desplazamiento definido por las estrías entre ambos lados del plano de falla como consecuencia de la existencia de determinadas componentes de cizalla, indicando por tanto, que dicho plano de falla contiene a σ2. En este caso el plano de falla forma un cierto ángulo α, con la componente mayor σ1 del elipsoide. El valor de α al que generalmente se le atribuyen 30º, depende en realidad del ángulo de rozamiento interno ϕ de la roca, a escala de macizo, según la relación \[ϕ = 90º - 2 \alpha. \]

Las fallas pueden ser de tres tipos dependiendo de que componente σ1, σ2, σ3 sea la vertical:

- **Normales**, cuando σ1 es vertical. La fase tectónica es distensiva o dereajuste.
- **Inversas**, cuando σ3 es vertical. La fase tectónica escompresiva.
- **Transcurrentes**, cuando σ2 es vertical. La fase tectónica estractcurrente.

En realidad, pueden presentarse todo tipo de casos intermedios.

Para el estudio del tipo de falla que presenta “el cofre” se realizó en base a la interpretación de los tectoglifos (Adolfo Eraso 1990), en este caso se aprovechó las estrías del plano de falla. El método empleado está basada en determinar el “rake of slip” a partir del “pitch”, este método usa la geometría del estriamiento que nos indicará el tipo de falla y con ello el sentido del movimiento. La componente “Dip” del movimiento de la falla se divide en componente horizontal (heave) y vertical (throw). (Declan G de Paor 2001). (Figura N°18).
Figura N° 18. Principales componentes de una falla, para la determinación del tipo de falla a través del “rake of slip”.

Como se puede observar en el cuadro N° 2, todas las mediciones de ángulos deben ser comprobadas con la apreciación en el campo, de los bloques que se deslizan ya sea techo caja o techo piso. Se pudo obtener la siguiente clasificación en base al “rake of slip” (Rs):

<table>
<thead>
<tr>
<th>ANGULO</th>
<th>TIPO DE FALLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs =0</td>
<td>Normal</td>
</tr>
<tr>
<td>90 < Rs > 0</td>
<td>Sinestral inversa</td>
</tr>
<tr>
<td>Rs =90</td>
<td>Sinestral</td>
</tr>
<tr>
<td>180 < Rs > 90</td>
<td>Sinestral Normal</td>
</tr>
<tr>
<td>Rs =180</td>
<td>inversa</td>
</tr>
<tr>
<td>270 < Rs > 180</td>
<td>Dextral Normal</td>
</tr>
<tr>
<td>Rs = 270</td>
<td>Dextral</td>
</tr>
<tr>
<td>360 < Rs > 270</td>
<td>Dextral Inversa</td>
</tr>
</tbody>
</table>

7.2.4.1. PROCEDIMIENTO A SEGUIR

El trabajo de campo consistió en localizar el mayor número de tectoglifos, con la localización de un plano de falla donde pueda determinarse el pitch y el sentido de desplazamiento. En este caso se anotaron los siguientes parámetros:

- Rumbo del plano de falla,
- Buzamiento con sentido de vergencia.
- Pitch con sentido de vergencia, y
- Sentido de desplazamiento de la falla.

Las líneas se proyectaron como puntos en proyección estereográfica. En este caso el dato que se obtuvo en el campo se refiere a la orientación de un plano de falla y el cabeceo de una familia de estrías que aparecen en este plano. El plano de falla está orientado N60ºE/40ºSE y la estría tiene un cabeceo de 30ºN, medido en el plano.

Para representar el estereograma correspondiente, se realizó el siguiente proceso:

a). Marcar en la circunferencia primitiva la dirección del plano 060º.
b). Girar el transparente hasta que esta marca esté situada en uno de los diámetros principales, norte-sur o este-oeste siempre que se utilice la falsilla de Wulff. Si se utiliza la de Schmidt, se realiza sobre el diámetro este-oeste únicamente.
c). En esta posición, se cuenta el valor del buzamiento sobre el diámetro E-O de la falsilla, teniendo en consideración su sentido, siempre desde la primitiva hacia el centro de la falsilla, y se pintó el círculo mayor que tiene esa dirección y ese ángulo 40ºE de buzamiento; dentro de este círculo mayor está la línea representada por su cabeceo (pitch). Si el cabeceo es el ángulo entre la línea y la dirección del plano inclinado que la contiene, solo se tiene que medir el ángulo de 30º en el plano (círculo mayor) colocado sobre un círculo mayor de la falsilla desde el norte, contando con ayuda de los círculos menores.
d). Este punto, situado sobre el estereograma del plano de falla, representa la orientación de la estría. (Figura N° 19).
Figura N° 19. Proyección estereográfica de una línea mediante su dirección y cabeceo sobre un plano conocido.
Para determinar el sentido del movimiento de la falla se hizo uso de la proyección estereográfica en donde se dibujó la inclinación de un Plano – m, que está definido como el plano que pasa a través del Polo del plano de falla y la dirección de las estrías (círculo mayor), a partir del Polo del plano de falla y con una flecha que nos indica el sentido del movimiento de la caja techo. (Figura N° 20).

Figura N° 20. Proyección estereográfica para la determinación del sentido del movimiento: proyección de la falla, su polo y las estrías; (2) creación del “Plano m” a partir del polo de la falla y las estrías; (3) indicación del sentido del movimiento en
el polo.

7.2.5. DEFINICIÓN DEL ELIPSOIDE DE CONJUNCIÓN DE UNA FALLA A PARTIR DEL CABECEO

Se tuvo que seguir la siguiente secuencia para realizar esta labor:
- Representar el plano de la falla única F y su polo P_F.
- Representar el punto correspondiente al pitch S sobre el plano F.
- Representar el plano de movimiento P-m, que es el círculo máximo que contenga a P_F y S.
- Representar el polo P_M del plano P-m; P_M es σ2; P_M ó σ2 están contenidos en el plano F.
- Situar σ1 a 30º del pitch S sobre el plano P-m, mediante el siguiente criterio:
 - A la derecha de F cuando la falla sea Dextral (D).
 - A la izquierda de F si la falla es Sinestral (S).
- Situar σ3 a 90º de σ1 sobre el plano P-m. P_M y S están a 90º sobre F (figura N° 21).

Figura N° 21. Definición del elipsoide de conjunción de una falla a partir del cabeceo (Pitch).
8.1. RESULTADOS DEL MAPEO Y MUESTREO GEOLOGICO SUBTERRANEO

Los reportes de ensayes, una vez procesados, fueron copiadas en formatos adecuados, con la ubicación, fecha, leyes sin diluir y ancho diluido, siendo los formatos el elemento principal para la estimación de tonelaje y leyes en un Inventario de Mineral (Reservas, Recursos y Otros Minerales), sin embargo se registró la información de Muestreo (Ubicación, Ancho de muestra, Leyes sin diluir, Ancho diluido), en un software, de manera que sirvió como base de datos para obtener leyes promedios diluidos de tramos mineralizados, y para la estimación de Reservas y/o Recursos.

8.2. PLANOS DE MUESTREO

Los resultados de ensayes de los muestreos fueron ploteados (incluyendo el número de muestras) en planos topográficos de tamaño adecuados a los planos geológicos correspondientes en los planos a la escala 1:250, las leyes respectivas se pusieron en el mismo canal y con un color de acuerdo a un rango establecido. (Plano: Nº 9).
Plano N° 9 Muestreo, Galería 870 N
8.3. CONFECCION DE SECCIONES

Los datos obtenidos en campo una vez revisados fueron digitalizados para obtener una base geológica en formato digital, y a partir de ahí se realizaron secciones que permitan controlar el yacimiento, y a su vez correlacionarlas con el plano de muestreo para una interpretación mejor poder determinar futuras exploraciones, que aumenten las reservas.

En yacimientos en explotación, las secciones que se elaboran son transversales a las estructuras mineralizadas tabulares, en cuerpos mineralizados y cualquier otro tipo de depósito, que presentan alguna elongación, las secciones son transversales al elongamiento.

En yacimientos de contacto las secciones también son transversales al contacto intrusivo-mineral. (Figura N° 22).
Figura N° 22. Sección geológica, de principales estructuras de la veta “El Cofre”.
8.4. RESULTADOS DE LA DETERMINACION DEL SENTIDO DEL MOVIMIENTO DE LA FALLA EL COFRE

8.4.1. PROYECCIONES ESTEREOGRAFICAS

Para determinar el tipo de falla en la U.M. “El Cofre” se empezó con la medición de estrías (pitch), en el plano de falla piso que se aprecia en la mayoría de las labores subterráneas de la mina, se tomaron cuatro mediciones en las principales labores donde se aprecia claramente el plano de falla piso, finalmente se interpretaron en gabinete. Como resultado de la proyección y determinación del sentido del movimiento a partir del cabeceo (pitch), se definieron las siguientes mediciones:

A).- MEDICION Nº 1 (Fig. N° 23)

UBICACIÓN: Nv -50 (a 6m del punto topográfico 13N), área medición 1m².
RUMBO : N 16 º E
BUZAMIENTO: 71 º NW

MEDICIÓN DE ESTRÍAS: promedio; 36º , conversión a “Rake of Slip” : 234º

Figura N° 23. (Izquierda) fotografía del área medida. (Derecha) proyección estereográfica indicando el sentido del movimiento; F falla, Pf polo de la falla, S estrías, P-m plano del movimiento.
B).- MEDICION N° 2 (Fig. N° 24)

UBICACIÓN: Nv -00 (a 1m del punto topográfico 18), en una área de 1m².
RUMBO: N 3º E
BUZAMIENTO: 79º NW
MEDICION DE ESTRIAS: promedio. 19º, conversión a “Rake of Slip”; 251º

Figura N° 24. A la (Izquierda) fotografía del área medida, a la (Derecha) proyección estereográfica con el sentido del movimiento; F falla, Pf polo de la falla, S estrías, P-m plano del movimiento.
C).- MEDICION Nº 3 (Fig. N° 25)

UBICACIÓN: Nv 040 (tajo 950 a 4.5m de la galería, punto topográfico 188), en una área de 1m².

RUMBO: N 7 º E

BUZAMIENTO: 89 º NW

MEDICION DE ESTRIAS: Promedio. 17º CONVERSIÓN a, “Rake of Slip”; 253º

Figura N° 25. A la (Izquierda) fotografía del área medida. A la (Derecha) proyección estereográfica con el sentido del movimiento; F falla, Pf polo de la falla, S estrías, P-m plano del movimiento.
D).- MEDICION N° 4 (Fig. N° 26)

UBICACIÓN: Nv100 (a 1m del punto topográfico 14), área de 1m².
RUMBO: N 12 º E
BUZAMIENTO: 78 º NW
MEDICION DE ESTRIAS: Promedio. 12º, conversion a “Rake of Slip”; 258º

Figura N° 26. A la (Izquierda) fotografía del área medida. A la (Derecha) proyección estereográfica con el sentido del movimiento; F falla, Pf polo de la falla, S estrías, P- m plano del movimiento.

Posteriormente se ubicaron estos resultados en un plano general, pudiendo definir que el movimiento ha sido progresivo, notándose claramente que el movimiento de la falla en un principio fue en un sentido casi horizontal y a medida que se desplazaba fue adquiriendo un pequeño ángulo de deslizamiento. (Plano N° 10).

Asimismo la estructura analizada dio como resultado una falla conjugada del tipo Dextral – Normal, con una fase tectónica transcurrente, producido por esfuerzos regionales tangenciales (lineamientos NW).
8.5.- DEFINICION DEL ELIPSOIDE DE CONJUNCION DE UNA FALLA

Con el resultado anterior se obtuvo la disposición de los esfuerzos para una falla transcurrente conjugada, siendo un control estructural para la mineralización, a su vez existen pequeñas fallas locales dentro de la galería (pos mineralizantes) que tienen un comportamiento Dextral (con tendencia E-W), desplazando a la mineralización por centímetros y a veces algunos metros. (Figura N° 27).

Figura N° 27. Izquierda; esquema de una falla transcurrente. (Idealizada para la falla “El Cofre” visa al Norte. Derecha proyección estereográfica para la definición del elipsoide de la conjunción de una falla, F plano de falla; P-m plano del movimiento; Pf polo dela falla; S pitch; σ_1, σ_2 y σ_3 esfuerzos principales.)
PLANO N° 10 UBICACIÓN D E LAS PROYECCIONES ESTEREOGRÁFICAS